

 Yashwantrao CMP517

 Chavan

 Maharashtra PHP Programming

 Open University

Yashwantrao Chavan Maharashtra Open University

Dnyangangotri, Near Gangapur Dam

Nashik-422222

PHP Programming

Yashwantrao Chavan Maharashtra Open University

Vice-Chancellor: Prof. E. Vayunandan

SCHOOL OF COMPUTER SCIENCE

Dr. Pramod Khandare
Director

School of Computer Science

Y.C.M.Open University Nashik

Shri. Madhav Palshikar

Associate Professor School

of Computer Science

Y.C.M.Open University

Nashik

Dr. P.V. Suresh
Director

School of Computer and

Information Sciences

I.G.N.O.U. New Delhi

Dr. Pundlik Ghodke
General Manager

R&D, Force Motors Ltd.

Pune.

Dr. Sahebrao Bagal
Principal,

Sapkal Engineering College

Nashik

Dr. Madhavi Dharankar
Associate Professor

Department of Educational

Technology

S.N.D.T. Women‘s University,

Mumbai

 Dr. Urmila Shrawankar
Associate Professor,

Department of Computer Science and

Engineering G.H. Raisoni College of

Engineering

Hingana Road, Nagpur

 Dr. Hemant Rajguru
Associate Professor,

Academic Service Division

Y.C.M.Open University

Nashik

 Shri. Ram Thakar
Assistant Professor

School Of Continuing

Education

Y.C.M.Open University

Nashik

 Mrs. Chetna Kamalskar
Assistant Professor

School of Science and Technology

Y.C.M.Open University, Nashik

 Smt. Shubhangi Desle

Assistant Professor

Student Service Division

 Y.C.M.Open University

Nashik

Writer/s Editor Co-ordinator Director

Prof. Parag N. Achaliya Prof. Vivek D. Patil Ms. Monali R. Borade Dr. Pramod Khandare

Assistant Professor, Assistant Professor, Academic Co-ordinator Director

SNJB‘s Late Sau Sandip Institute of School of Computer School of Computer

K.B. Jain College of Technology and Science, Y.C.M. Open Science, Y.C.M. Open

 Engineering Research centre, University, Nashik University, Nashik

 Chandwad, Nashik Nashik

Production

Course Objective

 To understand the fundamentals involved in technologies of Mobile computing

 To introduce Android & understand the basic of Android.

 Design the home screen using UI screen elements.

 Describe the platforms upon which the Android operating system will run.

 To understand android terminologies & resources

 Create an application that uses user interface elements under the Android operating

system

 Access and work with databases under the Android operating system

 To share data with another application.

Learning Outcomes:

 Students will be able to understand fundamentals of mobility computing.

 Students will be able to understand working of Android architectures and their

applications.

 Students will be able understand the user interface elements and learn the database

tools for developing applications on mobile platforms like Android.

 Student will be able to gain the knowledge of deployment of application in actual

android device.

Unit No and

Name

Title Counseling

Sessions

Weightage

Unit 1: Basics of

PHP

 Introduction

o Getting started with PHP

 Syntax

 Echo / Print

 Variables & Constants

 Data Types

 Comments

 Attributes

 Operators

 Decision Making & Loops

 Predefined Functions

 Date and Time

4 10

Unit 2: PHP Form

Handling

 Strings

 Arrays

 GET ,POST and REQUEST methods

 Reading fields from HTML

 PHP Validations

4 10

Unit 3: File

Handling, Session,

Cookies in PHP

 File Open/Read

 File Create/Write

 File Deletion

 File Upload

 Cookies

 Sessions

 Filters

4 10

Unit 4: Errors and

Exception

Handling in PHP

 Compilation of Errors and Warning

o Parse error

o syntax error

o Undefined index

 Error Reporting

 Exception Handling

4 10

Unit 5: PHP

MySQLi

 MySQLi connect

 Loop through MySQLi results

 Prepared statements in MySQLi

 Escaping Strings

 Debugging SQL in MySQLi

 MySQLi query

 How to get data from a prepared

statement

 MySQLi Insert ID

 Close connection

 Joins

4 10

Unit 6:

Object Oriented

Programming

 Defining PHP classes

 Creating objects in PHP

 Calling Member Functions.

 Constructor functions

 Destructor

 Inheritance

 Function Overriding

 Access Specifiers

 Interfaces

 Abstract Classes

 Static and Final Keywords

 Calling Parent Constructors

 Namespaces

 Functions

3 10

Unit 7: PHP

Frameworks and

Laravel

 Introduction to Framework

o Laravel

o CodeIgniter

o CakePHP

 Yii

 MVC(Model View controller)

Introduction

 Laravel Installation

 Laravel Database Connectivity

4 10

Unit 8: Content

Management

system and

WordPress

 Introduction to CMS

o WordPress

o Joomla

o Drupal

o Magento

 WordPress

o Home

o Overview

o Installation

o Dashboard

3 10

o Add, Delete, Publish Post

o Media Library

o Add, Delete, Publish Page

 30 80

Reference Books:

1. Php: The Complete Reference by steven holzner, Publisher: Mcgraw Hill, Latest edition

2. Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5 (Learning PHP,

MYSQL, Javascript, CSS & HTML5) by Robin Nixon, O'Reilly Media, 5
th

 edition (2018).

3. The Joy of PHP Programming: A Beginner‘s Guide to Programming Interactive Web

Applications with PHP and MySQL, Author –Alan Forbes, Latest Edition – Fifth Edition,

Publisher – Plum Island Publishing LLC.

4. Code Smart: The Laravel Framework Version 5 for Beginners by Dayle Rees.

5. Building Web Apps with WordPress: WordPress As An Application Framework by Brian

Messenlehner and Jason Coleman Foreword by Brad Williams.

6. PHP Cookbook: Solutions & Examples For PHP Programmers by Adam Trachtenberg and

David Sklar

 Note: This Study material is still under development/editing process and is being made available for the sole

purpose of reference. Final edited copies will be made available once ready.

Chapter 1. BASICS OF PHP

Learning Objectives:
After successful completion of this unit, you will be able to

1. Understand origin of PHP

2. Understand basics of PHP.

3. Summarize variables, constants and data types.

4. Summarize conditional statement in PHP.

5. Summarize built in functions in PHP.

This chapter will introduce you to PHP. You will learn how it came about, what it looks like,

and why it is the best server-side technology. You will also be exposed to the most important

features of the language.

This chapter will let you poke around the different variables & constants, data types,

operators, decision making & loops, predefined functions in PHP.

1.1 Introduction
The term PHP is an acronym for PHP: Hypertext Preprocessor. PHP is a server-side

scripting language designed specifically for web development. PHP can be easily embedded

in HTML files and HTML codes can also be written in a PHP file. The thing that

differentiates PHP with client-side language like HTML is, PHP codes are executed on the

server whereas HTML codes are directly rendered on the browser. In our entire course we

will be studying PHP 7 version and on an Ubuntu OS.

1.2 The Origins of PHP
Wonderful things come from singular inspiration. PHP began life as a simple way to

track visitors to RasmusLerdorf's online resume. It also could embed SQL queries inWeb

pages. But as often happens on the Web, admirers quickly asked for their owncopies. As a

proponent of the Internet's ethic of sharing, as well as a generally agreeable person, Rasmus

unleashed upon an unsuspecting Web his Personal Home Page Toolsversion 1.0.

"Unleashed upon himself" may be more accurate. PHP became very popular.

Aconsequence was a flood of suggestions. PHP 1.0 filtered input, replacing simplecommands

for HTML. As its popularity grew, people wondered if it couldn't do more.

Loops, conditionals, rich data structures—all the conveniences of modern

structuredprogramming seemed like a next logical step. Rasmus studied language parsers,

readabout YACC and GNU Bison, and created PHP 2.0.

PHP 2.0 allowed developers to embed structured code inside HTML tags. PHP

scriptscould parse data submitted by HTML forms, communicate with databases, and make

complex calculations on the fly. And it was very fast, because the freely available sourcecode

compiled into the Apache Web server. A PHP script executed as part of the Webserver

process and required no forking, often a criticism of Common Gateway Interface(CGI)

scripts.

PHP was a legitimate development solution and began to be used for commercial

Websites. In 1996 Clear Ink created the SuperCuts site (www. supercuts.com) and used

PHPto create a custom experience for the Web surfer.

1.3 PHP Installation
 LAMP stack is a group of open source software used to get web servers up

and running. The acronym stands for Linux, Apache, MySQL, and PHP.

Following are the steps for installation:

Step 1: Prerequisites

You must have sudo privileges account access to the Linux system. Login to your

system and upgrade the current packages to the latest available version.

 sudo apt update

 sudo apt upgrade

Also, install the below packages on your system.

 sudo apt install ca-certificates apt-transport-https

Step 2:Install Apache Web Server

In this section, we will install a web server on your VPS. We can install Apache, or

nginx as a web server. For the purpose,we will install the Apache web server. Apache is a fast

and secure web server and one of the most popular and widely used web server in the world.

To install the Apache web server, run the following command on your server:

apt-get install apache2

After the installation is complete, you should start Apache:

systemctl start apache2

Also, you can enable Apache to start automatically on server boot:

systemctl enable apache2

To check the status of the Apache web server and make sure it is up and running, you can use

the following command:

systemctl status apache2

To verify that Apache is running, you can also open your web browser and enter your server

IP address, (e.g. http://your_server_ip_address). If Apache is successfully installed, you

should see the Apache default welcome page.

Step 3: Install MySQL

MySQL is a powerful database management system used for organizing and

retrieving data. To install MySQL, open terminal and type in these commands:

 sudo apt-get install mysql-server libapache2-mod-auth-mysql php5-mysql

During the installation, MySQL will ask you to set a root password. If you miss the chance to

set the password while the program is installing, it is very easy to set the password later from

within the MySQL shell.

Once you have installed MySQL, we should activate it with this command:

 sudomysql_install_db

Finish up by running the MySQL set up script:

 sudo /usr/bin/mysql_secure_installation

The prompt will ask you for your current root password.

Type it in.

Enter current password for root (enter for none):

OK, successfully used password, moving on...

Then the prompt will ask you if you want to change the root password. Go ahead and

choose N and move on to the next steps.

It‘s easiest just to say Yes to all the options. At the end, MySQL will reload and implement

the new changes.

Step 4: Install PHP7

PHP is an open source web scripting language that is widely used to build dynamic

webpages.

To install PHP, open terminal and type in this command.

sudo apt-get install -y php7.0

1.4 PHP Basic Syntax
PHP or Hypertext Preprocessor is a widely used open-source general purpose

scripting language and can be embedded with HTML. PHP scripts can be written anywhere

in the document within PHP tags along with normal HTML.

1.4.1 Writing PHP Statements

A PHP statement tells PHP to perform an action. One of the most common PHP statements is

the echo statement. Its purpose is to display output. For instance, take a look at the following

echo statement:

echo ―Hi‖;

An echo statement says to output everything that is between the double quotes (―). So, this

statement tells PHP to output the word Hi.

The echo statement is a simple statement. PHP simple statements end with a semicolon (;).

PHP reads a simple statement until it encounters a semicolon (or the PHP closing tag). PHP

ignores white space. It doesn‘t care how many lines it reads. It doesn‘t consider the content or

the syntax of the statement. It just reads until it finds a semicolon and then interprets the

entire content as a single statement.

Another common PHP statement similar to echo statement is print, which is also used

to output data to the screen. The print statement can be used with or without parentheses:

print or print().

The following example shows how to output text with the print

print"Hello world!";

print"I'm about to learn PHP!";

Leaving out the semicolon is a common error, resulting in an error message that looks

something like this:

Parse error: expecting `‘,‘‘ or `‘;‘‘ in file.phpon line 6

Notice that the error message gives you the line number where it encountered problems.

Usually, the error is that the semicolon was left off in the line before the indicated line. In this

case, the semicolon is probably missing on line 5.

You may prefer to use an editor that displays line numbers. Debugging your PHP scripts is

much easier this way. Otherwise, you need to count the lines from the top of the script to find

the line containing the error. If your script contains six lines, counting them is no big deal. If

your script contains 553 lines, however, this is less than fun. Some editors allow you to

indicate a line number, and the editor takes you directly there. As far as PHP is concerned, an

entire script full of simple statements can be written in one long line, as long as the

statements are separated by semicolons.

However, a human would have a tough time reading such a script. Therefore, you should put

simple statements on separate lines.

Sometimes several statements are combined into a block, which is enclosed by curly braces

({}). Statements in a block execute together. A common use of a block is in a conditional

statement where statements are executed only if certain conditions are met. For instance, you

may want to include the following instructions:

if (time = midnight)

{

put on pajamas;

brush teeth;

go to bed;

}

The statements are enclosed in curly braces to ensure they execute as a block. If it‘s midnight,

then all three actions within the block are performed. If the time is not midnight, none of the

statements execute (no pajamas, no clean teeth; no going to bed).

PHP statements that use blocks, such as if statements, are called complex statements. PHP

reads the entire complex statement, not stopping at the first semicolon it encounters. PHP

knows to expect one or more blocks and looks for the ending curly brace of the last block in

complex statements. Notice that there is a semicolon before the ending brace. This semicolon

is required, but no semicolon is required after the ending curly brace.

Notice that the statements inside the block are indented. Indenting is not necessary for PHP.

Indenting is strictly for readability. You should indent the statements in a block so that people

reading the script can tell more easily where a block begins and ends. One of the more

common mistakes when writing scripts is to leave out a closing curly brace, particularly when

writing blocks inside blocks inside blocks. Tracking down a missing brace is much easier

when the blocks are indented.

1.4.2 Building Scripts

To build a script, you add PHP statements one after another to a file that you name

with a .php extension. Actually, if you are wise, you write the script on paper first, unless the

script is very simple or you are quite experienced.

Planning makes programming much less prone to errors.If you‘re writing a PHP script for

your Web site, you insert the PHP statements into the file that contains the HTML for your

Web page. If you‘re writing a script that will run independent of the Web, you type the PHP

statements into a file and then you run the script by calling PHP directly.

1.5 PHP Tags or Escaping To PHP

The mechanism of separating a normal HTML from PHP code is called the mechanism of

Escaping To PHP. There are various ways in which this can be done. Few methods are

already set by default but in order to use few others like Short-open or ASP-style tags we

need to change the configuration of php.ini file. These tags are also used for embedding PHP

within HTML. There are 4 such tags available for this purpose:-

1. Canonical PHP Tags:The script starts with <?phpand ends with ?>. These tags are

also called ‗Canonical PHP tags‘. Every PHP command ends with a semi-colon (;).

Let‘s look at the hello world program in PHP:

<?php

Here echo command is used to print

echo "Hello, world!";

?>

Output:

Hello, world!

2. SGML or Short HTML Tags: These are the shortest option to initialize a PHP code.

The script starts with <? and ends with ?>. This will only work by setting the

short_open_tag setting in php.ini file to ‗on‘.

Example:

<?

Here echo command will only work if

setting is done as said before

echo "Hello, world!";

?>

3. HTML Script Tags: These are implemented using script tags. This syntax is

removed in PHP 7.0.0 so its no more used.

Example:

<script language="php">

echo "hello world!";

</script>

4. ASP Style Tags: To use this we need to set the configuration of php.ini file. These are

used by Active Server Pages to describe code blocks. These starts with <% and ends

with %>.

Example:

<%

Can only be written if setting is turned on

to allow %

echo "hello world";

%>

1.6Running a PHP script:

For Linux/ Unix, if you have a file named testcli.php containing this PHP code, you

can run it from the command line by having the file in the same directory where PHP is

installed and by typing the following:

phptestcli.php

Or you can type the entire path name to PHP, as in the following example:

/usr/local/php/cli/phptestcli.php

The CLI version of PHP differs from the CGI version in the following ways:

1. Outputting HTTP headers: Because the CGI version sends its output to the Web

server and then to the browser, it outputs the HTTP headers (statements the Web

server and browser use to communicate with each other). Thus, the following is the

output when the CGI version runs the script in the previous example:

Content-type: text/html

X-Powered-By: PHP/7.0

This line brought to you by PHP

You don‘t see the two headers on your Web page, but PHP for the Web sends these

headers because the Web server needs them. The CLI version, on the other hand, does

not automatically send the HTTP headers because it is not sending its output to a Web

server. The CLI output is limited to the following:

This line brought to you by PHP

2. Formatting error messages: The CGI version formats error messages with HTML

tags, because the errors are expected to be received by a browser. The CLI version

does not use HTML formatting for error messages; it outputs error messages in plain

text.

3. Providing argc and argv by default: The argc and argv variables allow you to

supply data to the script from the command line (similar to argc and argv in C and

other languages). You aren‘t likely to want to pass data to the CGI version, but you

are likely to want to pass data to the CLI version. Therefore, argv and argc are

available by default in the CLI version and not in the CGI version.

When you run PHP CLI from the command line, you can use several options that affect

the way PHP behaves. For instance, -v is an option that displays the version of PHP being

accessed. To use this option, you would type the following:

php –v

Table 1.1 shows the most useful PHP command-line options.

Option What it Does

-c Defines the path to the php.ini file to be used. This can be a different

php.ini file than the one used by the CGI version. For example,

-c /usr/local/php/cli/php.ini.

-f Identifies the script to be run. For example,

php -f /myfiles/testcgi.php.

-h Displays a help file.

-i Displays PHP information in text output. Gives the same information as

phpinfo()

-l Checks the script file for errors, but doesn‘t actually execute the code

-m Lists the modules that are compiled into PHP

-r Runs PHP code entered at the command line. For example,

php–r‗print(‗Hi‘);‘.

-v Displays the version number of PHP.

1.7 Variables in PHP
Variables are containers that hold information. First, you give a variable aname, and then you

can store information in it. For example, you couldname a variable $age and store the number

21 in it. After you store informationin a variable, you can use that variable later in the

script.When using PHP on the Web, variables are often used to store the informationthat

users type into an HTML form, such as their names. You can thenuse the variable later in the

script, perhaps to personalize a Web page by displayingthe user‘s name, as in, for example,

Welcome Sam Smith.

In this section, you find out how to create variables, name them, and storeinformation in

them. You also discover how to handle errors.

1.7.1 Naming Variables

In PHP, a variable starts with the $ sign, followed by the name of the variable.

The rules for variable names are as follows:

1. All variable names start with a dollar sign ($). This tells PHP that it is a variable

name.

2. Variable names can be any length.

3. Variable names can include letters, numbers, and underscores only.
4. Variable names must begin with a letter or an underscore. They cannot begin with

a number.

5. Uppercase and lowercase letters are not the same: $favoritecity and $Favoritecity

are not the same variable. If you store information in $FavoriteCity, you can‘t retrieve

that information later in the script by using the variable name $favoriteCity.

The following are valid variable names:

$_name

$first_name

$name3

$name_3

The following variable names cause error messages:

$3name

$name?

$first+name

$first.name

1.7.2 Creating variables

Storing information in a variable creates it. To store information in a variable, you use a

single equal sign (=).

For example,

The following four PHP statements assign information to variables:

$age = 21;

$price = 20.52;

$temperature = -5;

$name = ―Ramesh‖;

In these examples, notice that the numbers are not enclosed in quotes, but the name, which is

a string of characters, is. The quotes tell PHP that the characters are a string, handled by PHP

as a unit. Without the quotes, PHP doesn‘t know the characters are a string and won‘t handle

them correctly.

Whenever you put information into a variable that did not previously exist, you create that

variable.

For example, suppose you use the following PHP statements at the top of your script:

$color = ―blue‖;

$color = ―red‖;

If the first statement is the first time you mention the variable $color, thisstatement creates

the variable and sets it to ―blue‖. The next statementchanges the value of $color to ―red‖.

You can store the value of one variable in another variable, as shown in thefollowing

statements:

$name1 = ―Suresh‖;

$name2 = ―Patil‖;

$favorite_name = $name2;

After these statements are executed, the variable $favorite_name contains the value ―Suresh‖.

You can create a variable without storing any information in it.

For example,the following statement creates a variable:

$city = ―‖;

1.7.3 Displaying variable values

The quickest way to display the value stored in a variable is with the print_r statement. You

can output the value of a variable as in the following statements:

$today = ―Sunday‖;

print_r($today);

The output from the preceding statements is Sunday.

You can also display the value by using an echo statement. If you used thefollowing PHP

statements

$age = 21;

echo $age;

in a PHP section, the output would be 21.

Using an echo statement of the preceding form, with one variable only, providesthe same

basic output as the print_r statement. However, you can doa lot more with the echo statement.

You can output several items and include numbers and strings together.

For example, suppose the variable $name hasthe value Ramesh. You can include the

following line in an HTML file:

<p>Welcome <?php echo $name ?></p>

The output on the Web page is as follows:

Welcome Ramesh

If you use a variable that does not exist, you get a warning message. Forexample, suppose

you intend to display $age, but type the following statementby mistake:

echo $aeg;

You get a notice that looks like the following:

Notice: Undefined variable: aeg in c:\testvar.php on line 5

The notice points out that you‘re using a variable that has not yet been givena value.

1.8 Working with Constants

Constants are similar to variables. Constants are given names, and values arestored in them.

However, constants are constant; they can‘t be changed bythe script. After you set the value

for a constant, it stays the same. If you usea constant for weather and set it to sunny, it can‘t

be changed.

1.8.1 Creating constants

Constants are set by using the define statement. The general format is asfollows:

define(―constantname‖,‖constantvalue‖);

For example, to set a constant with the weather, use the following statement:

define(―WEATHER‖,‖Sunny‖);

This statement creates a constant called WEATHER and sets its value to―Sunny‖.

When naming constants, use descriptive names, as you do for variables.However, unlike

variables, constant names do not begin with a dollar sign ($).By convention, constants are

given names that are all uppercase so you cansee easily that they‘re constants. However, PHP

accepts lowercase letterswithout complaint.You can store either a string or a number in a

constant. The following statement,which defines a constant named INTEREST and assigns to

it the value.01, is perfectly okay with PHP:

define (―INTEREST‖,.01);

Constants should not be given names that are keywords for PHP. Keywords arewords that

have meaning for PHP, such as echo, and they can‘t be used as constantsbecause PHP treats

them as the PHP feature of the same name. PHP willlet you define a constant ECHO without

giving an error message, but it will havea problem when you try to use the constant. For

example, if you use the followingstatement:

echoECHO;

PHP gets confused and displays an error message. It sees the constant as thebeginning of

another echo statement, but it can‘t find all the things it needsto complete the first echo

statement.

Some PHP keywords include the following:

And as break

Case class const

Continue declare default

Die do echo

Else empty eval

Exit for foreach

Function global if

Include list new

Or print require

Return switch use

var while

If you‘re baffled by some code that looks perfectly okay but refuses to workcorrectly, even

after numerous changes, try changing the name of a constant.It‘s possible that you are using

an obscure keyword for your constant, andthat‘s causing your problem. This doesn‘t happen

often, but it‘s possible.Although you can use keywords for variable names, because the

beginning $tells PHP the keyword is a variable name, you probably shouldn‘t. It causestoo

much confusion for the humans involved.

1.8.2 Understanding when to use constants

If you know the value of something won‘t change during the script, use a constant.Using a

constant allows you to use a descriptive name, making thescript clearer. For example,

PRODUCT_COST is much clearer than 20.50.Using a constant allows you set the value once

at the beginning of the script.If this value ever needs to be changed, using constants allows

you to changeit in only one place, instead of finding and changing the value in 20

differentplaces throughout the script. One change is better than 20. It‘s less work andlessens

the likelihood of missing a place that needed to be changed, leadingto unknown and unseen

havoc.Using a constant ensures that the value won‘t be changed accidentally somewherein

the script, leading to the wrong value being used in statements laterin the script.

Suppose you have a script that must change money from one currency toanother by

multiplying the dollar amount by the exchange rate. For example,if the exchange rate from

Indian Rupee to U.S. dollars is 0.014, you can write thefollowing code:

<?php

$Indian_Rupee = 20.00;

$US_dollars = $Indian_Rupee * 0.014;

?>

Now, suppose your script contains 40,000 lines of code and you need to convertIndian Rupee

to U.S. dollars in 50 different places in the script. So you usethe preceding code in 50

different places. Then you realize that the exchangerate is likely to change every week, so

you would need to go through this scriptevery week and change 0.014 to something else,

manually, in 50 different places.

That’s a lot of work.

A better way to handle this is to put the exchange rate in a variable so youcould change it

only in one place. You change your script to the following:

<?php

$rate = 0.014;

$Indian_Rupee = 20.00;

$US_dollars = $Indian_Rupee * $rate;

?>

You set $rate at the beginning of the script. Then you can use the two linesthat convert the

currency in all 50 parts of the script. This is clearly a betteroption. When the rate changes,

you need to change the rate in only oneplace. For example, if the exchange rate changes to

0.20 next week, you justchange the first line of the script to the following:

$rate = 0.20;

This would work. However, $rate is not a very descriptive name. Rememberthat your script is

40,000 lines of code and the 2 lines of code that convertcurrency are used in 50 different

places. Suppose somewhere in the middle ofyour script you need to add some code to

compute interest. Suppose youaccidentally use the following code somewhere in the middle

of your script:

$interest_rate = 20;

$rate = $interest_rate-1;

$amount = $principal * $rate;

All the places after this code will have a different value for rate; the 0.014 thatyou set at the

beginning of your script will be replaced by the 19 set by thiscode. You can guard against this

by using more descriptive variable names.

Or an even better option is to use a constant, as in the following script:

<?php

define(―RATE‖,0.014);

$Indian_Rupee = 20.00;

$US_dollars = $Indian_Rupee * $RATE;

?>

Now you are using a constant, RATE, that can‘t be changed in the script. Ifyou try to add the

line

RATE = 20;in the middle of your script, PHP won‘t allow it. So, you won‘t make the

mistakethat you made with the variable.

Next week when the exchange rate changes to 1.53, you just edit your scriptas follows:

<?php

define(―RATE‖,0.014);

$Indian_Rupee = 20.00;

$US_dollars = $Indian_Rupee * $RATE;

?>

Of course, this would be even better if you used a more descriptive name,such as the

following:

define(―IR_TO_US‖,0.014);

Keep in mind that mistakes that seem impossible to make when you‘re lookingat a ten-line

script, become entirely possible when you think in terms ofscripts with thousands of lines of

code, especially scripts with more than oneprogrammer involved.

If you know the value of something won‘t change during the script, use a constant. If you

need to manipulate the value somewhere in the script, usea variable.

1.8.3 Displaying constants

You can determine the value of a constant by using print_r as follows:

print_r(IR_TO_US);

You can also use a constant in an echo statement:

echoIR_TO_US;

When you echo a constant, you can‘t enclose it in quotes. If you do, it echoesthe constant

name rather than the value. You can echo the constant as shownin the preceding example, or

you can enclose it with parentheses. You canbuild more complicated output statements by

using commas, as in the followingexample:

echo ―The exchange rate is $‖,IR_TO_US;

The output from this statement is the following:

The exchange rate is $0.014.

Notice that the dollar sign is inside the quoted string in the first outputstring, not in the

second output item as part of the constant name.

1.8.4 Utilizing built-in PHP constants

PHP has many built-in constants that you can use in your scripts. For example,

the constant _ _LINE_ _ has a value that is the line number where it isused, and _ _FILE_ _

contains the name of the file in which it is used. (Theseconstants begin with two underscores

and end with two underscores.) Forexample, you can use the following statement:

echo _ _FILE_ _;

The output looks similar to the following:

c:\program files\apache group\apache\htdocs\testvar2.php

PHP has many other built-in constants. For example, E_ALL and E_ERROR areconstants

you can use to affect how PHP handles errors.

1.9 Data Types in PHP

Data Types defines the type of data a variable can store. PHP allows eight different types of

data types. All of them are discussed below. The first five are called simple data types and the

last three are compound data types:

1.9.1 Integer: Integers hold only whole numbers including positive and negative

numbers, i.e., numbers without fractional part or decimal point. They can be

decimal (base 10), octal (base 8) or hexadecimal (base 16). The default base is

decimal (base 10). The octal integers can be declared with leading 0 and the

hexadecimal can be declared with leading 0x. The range of integers must lie

between -2^31 to 2^31.

Example:

<?php

// decimal base integers

$deci1= 50;

$deci2= 654;

 // octal base integers

$octal1= 07;

 // hexadecimal base integers

$octal= 0x45;

$sum= $deci1+ $deci2;

echo$sum;

?>

Output:

 704

1.9.2 Double: Can hold numbers containing fractional or decimal part including

positive and negative numbers. By default, the variables add a minimum number

of decimal places. Example:

<?php

 $val1= 50.85;

$val2= 654.26;

 $sum= $val1+ $val2;

 echo$sum;

 ?>

Output:

705.11

1.9.3 String: Hold letters or any alphabets, even numbers are included. These are

written within double quotes during declaration. The strings can also be written

within single quotes but it will be treated differently while printing variables.

Example:

<?php

$name= "Krishna";

echo"The name of the Geek is $name \n";

echo'The name of the geek is $name';

?>

Output:

The name of the Geek is Krishna

The name of the geek is $name

1.9.4 NULL: These are special types of variables that can hold only one value i.e.,

NULL. We follow the convention of writing it in capital form, but its case

sensitive.

Example:

<?php

 $nm= NULL;

echo$nm; // This will give no output

?>

1.9.5 Boolean: Hold only two values, either TRUE or FALSE. Successful events will

return true and unsuccessful events return false. NULL type values are also treated

as false in Boolean. Apart from NULL, 0 is also considering as false in boolean. If

a string is empty then it is also considered as false in boolean data type.

Example:

<?php

 if(TRUE)

 echo"This condition is TRUE";

if(FALSE)

 echo"This condition is not TRUE";

?>

Output:

This condition is TRUE

1.9.6 Arrays: Array is a compound data-type which can store multiple values of same

data type. Below is an example of array of integers.

<?php

$intArray= array(10, 20 , 30);

echo"First Element: $intArray[0]\n";

echo"Second Element: $intArray[1]\n";

echo"Third Element: $intArray[2]\n";

?>

Output:

First Element: 10

Second Element: 20

Third Element: 30

1.9.7 Objects: Objects are defined as instances of user defined classes that can hold

both values and functions. This is an advanced topic and will be discussed in

details in further articles.

1.9.8 Resources: Resources in PHP are not an exact data type. These are basically used

to store references to some function call or to external PHP resources. For

example, consider a database call. This is an external resource.

1.10 PHP Operators

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

1. Arithmetic operators

2. Assignment operators

3. Comparison operators

4. Increment/Decrement operators

5. Logical operators

6. String operators

7. Array operators

1.10.1 PHP Arithmetic Operators

The PHP arithmetic operators are used with numeric values to perform common arithmetical

operations, such as addition, subtraction, multiplication etc.

Operator Name Example Result

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by $y

** Exponentiation $x ** $y
Result of raising $x to the $y'th power

(Introduced in PHP 5.6)

1.10.2 PHP Assignment Operators

The PHP assignment operators are used with numeric values to write a value to a variable.

The basic assignment operator in PHP is "=". It means that the left operand gets set to the

value of the assignment expression on the right.

Assignment Same as... Description

x = y x = y
The left operand gets set to the value of the expression on

the right

x += y x = x + y Addition

x -= y x = x – y Subtraction

x *= y x = x * y Multiplication

x /= y x = x / y Division

x %= y x = x % y Modulus

1.10.3 PHP Comparison Operators

The PHP comparison operators are used to compare two values (number or string):

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

=== Identical $x === $y
Returns true if $x is equal to $y, and they are of

the same type

!= Not equal $x != $y Returns true if $x is not equal to $y

<> Not equal $x <> $y Returns true if $x is not equal to $y

!== Not identical $x !== $y
Returns true if $x is not equal to $y, or they are

not of the same type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>=
Greater than or

equal to
$x >= $y Returns true if $x is greater than or equal to $y

<=
Less than or

equal to
$x <= $y Returns true if $x is less than or equal to $y

1.10.4 PHP Increment / Decrement Operators:

The PHP increment operators are used to increment a variable's value.

The PHP decrement operators are used to decrement a variable's value.

Operator Name Description

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-decrement Returns $x, then decrements $x by one

1.10.5 PHP Logical Operators

The PHP logical operators are used to combine conditional statements.

1.10.6 PHP String Operators

PHP has two operators that are specially designed for strings.

Operator Name Example Result

. Concatenation $txt1 . $txt2 Concatenation of $txt1 and $txt2

.=
Concatenation

assignment
$txt1 .= $txt2 Appends $txt2 to $txt1

1.10.7 PHP Array Operators

The PHP array operators are used to compare arrays.

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y Returns true if $x and $y have the same key/value pairs

=== Identity $x === $y
Returns true if $x and $y have the same key/value pairs in

the same order and of the same types

Operator Name Example Result

And And $x and $y True if both $x and $y are true

Or Or $x or $y True if either $x or $y is true

Xor Xor $x xor $y True if either $x or $y is true, but not both

&& And $x && $y True if both $x and $y are true

|| Or $x || $y True if either $x or $y is true

! Not !$x True if $x is not true

!= Inequality $x != $y Returns true if $x is not equal to $y

<> Inequality $x <> $y Returns true if $x is not equal to $y

!==
Non-

identity
$x !== $y Returns true if $x is not identical to $y

1.11 Using Conditional Statements:

A conditional statement executes a block of statements only when certain conditionsare true.

Here are two useful types of conditional statements:

1.11.1 if statement: Sets up a condition and tests it. If the condition is true, a block of

statements is executed.

An if statement tests conditions, executing a block of statements when a conditionis

true. The general format of an if conditional statement is as follows:

if (condition)

{

block of statements

}

elseif (condition)

{

block of statements

}

else

{

block of statements

}

The if statement consists of three sections:

i. if: This section is required. It tests a condition: If the condition is true: The

block of statements is executed. After the statements are executed, the script moves to

the next instruction following the conditional statement; if the conditional statement

contains any elseif or else sections, the script skips overthem.

If the condition is not true: The block of statements is not executed.

ii. elseif: This section is optional. You can use more than one elseif section if you

want. It also tests a condition:If the condition is true: The block of statements is

executed.After executing the block of statements, the script goes to the nextinstruction

following the conditional statement; if the if statement contains any additional elseif

sections or an else section, thescript skips over them.

If the condition is not true: The block of statements is not executed.The script skips

to next instruction, which can be an elseif, anelse, or the next instruction after the if

conditional statement.

iii. Else: This section is also optional. Only one else section is allowed.This

section does not test a condition, rather it executes the block ofstatements. If the script

has entered this section, it means that the ifsection and all the elseif sections are not

true.

Here‘s an example. Pretend you‘re a teacher. The following if statement,when given a

test score, sends your student a grade and a snappy little textmessage. It uses all three

sections of the if statement, as follows:

if ($score > 92)

{

$grade = ―A‖;

$message = ―Excellent!‖;

}

elseif ($score <= 92 and $score > 83)

{

$grade = ―B‖;

$message = ―Good!‖;

}

elseif ($score <= 83 and $score > 74)

{

$grade = ―C‖;

$message = ―Okay‖;

}

elseif ($score <= 74 and $score > 62)

{

$grade = ―D‖;

$message = ―Uh oh!‖;

}

else

{

$grade = ―F‖;

$message = ―Doom is upon you!‖;

}

echo $message.‖\n‖;

echo ―Your grade is $grade\n‖;

The if conditional statement proceeds as follows:

a) The value in $score is compared to 92.If $score is greater than 92, $grade is

set to A, $message is set toExcellent!, and the script skips to the echo statement. If

$score is 92or less, $grade and $message are not set, and the script skips to the elseif

section.

b) The value in $score is compared to 92 and to 83. If $score is 92 or less and

greater than 83, $grade and $message areset, and the script skips to the echo

statement. If $score is 83 or less,$grade and $message are not set, and the script skips

to the second elseif section.

c) The value in $score is compared to 83 and to 74.If $score is 83 or less and

greater than 74, $grade and $message areset, and the script skips to the echo

statement. If $score is 74 or less,$grade and $message are not set, and the script skips

to the next elseif section.

d) The value in $score is compared to 74 and to 62. If $score is 74 or less and

greater than 62, $grade and $message are set,and the script skips to the echo

statement. If $score is 62 or less, $gradeand $message are not set, and the script skips

to the else section.

e) $grade is set to F, and $message is set to Doom is upon you!.

The script continues to the echo statement.

When the block to be executed by any section of the if conditional statementcontains

only one statement, the curly braces are not needed. Forexample, say the preceding

example had only one statement in the blocks,as follows:

if ($grade > 92)

{

$grade = ―A‖;

}

You could write it as follows:

if ($grade > 92)

$grade = ―A‖;

This shortcut can save some typing, but when several if statements areused, it can lead

to confusion.

Nesting if statements

You can have an if conditional statement inside another if conditionalstatement.

Putting one statement inside another is called nesting. For example,suppose you need

to contact all your customers who live in Idaho. Youplan to send e-mail to those who

have e-mail addresses and send letters tothose who do not have e-mail addresses. You

can identify the groups of customersby using the following nested if statements:

if ($custState == ―ID‖)

{

if ($EmailAdd = ―‖)

{

$contactMethod = ―letter‖;

}

else

{

$contactMethod = ―email‖;

}

}

else

{

$contactMethod = ―none needed‖;

}

These statements first check to see if the customer lives in Idaho. If the customerdoes

live in Idaho, the script tests for an e-mail address. If the e-mailaddress is blank, the

contact method is set to letter. If the e-mail addressis not blank, the contact method is

email. If the customer does not live inIdaho, the else section sets the contact method

to indicate that the customerwill not be contacted at all.

1.11.2 Switch statement: Sets up a list of alternative conditions. It tests for the true

condition and executes the appropriate block of statements.

For most situations, the if conditional statement works best. However, sometimes you

have a list of conditions and want to execute different statements for each condition.

For example, suppose your script computes sales tax. How do you handle the different

state sales tax rates? The switch statement was designed for such situations.

The switch statement tests the value of one variable and executes the block of

statements for the matching value of the variable. The general format is as follows:

switch ($variablename)

{

casevalue :

block of statements;

break;

casevalue :

block of statements;

break;

...

default:

block of statements;

break;

}

The switch statement tests the value of $variablename. The script then skips to the case

section for that value and executes statements until it reaches a break statement or the

end of the switch statement. If there is no case section for the value of $variablename,

the script executes the default section. You can use as many case sections as you need.

The default section is optional. If you use a default section, it‘s customary to put the

default section at the end, but as far as PHP is concerned, it can go anywhere. The

following statements set the sales tax rate for different states:

switch ($custState)

{

case“OR” :

$salestaxrate = 0;

break;

case“CA” :

$salestaxrate = 1.0;

break;

default:

$salestaxrate = .5;

break;

}

$salestax = $orderTotalCost * $salestaxrate;

In this case, the tax rate for Oregon is 0, the tax rate for California is 100 percent, and

the tax rate for all the other states is 50 percent. The switch statement looks at the value

of $custState and skips to the section that matches the value. For example, if $custState

is TX, the script executes the default section and sets $salestaxrate to .5. After the

switch statement, the script computes $salestax at .5 times the cost of the order. The

break statements are essential in the case section. If a case section does not include a

break statement, the script does not stop executing at the end of the case section. The

script continues executing statements past the end of the case section, on to the next

case section, and continues until it reaches a break statement or the end of the switch

statement. This is a problem for every case section except the last one because it will

execute sections following the appropriate section. The last case section in a switch

statement doesn‘t actually require a break statement. You can leave it out. However,

it‘s a good idea to include it for clarity and consistency.

1.11.3 Repeating Actions by Using Loops
Loops are used frequently in scripts to set up a block of statements thatrepeat. The

loop can repeat a specified number of times. For example, a loopthat echoes all the state

capitals needs to repeat 50 times. Or the loop canrepeat until a certain condition is met.

For example, a loop that echoes thenames of all the files in a directory needs to repeat

until it runs out of files,regardless of how many files there are. Here are three types of

loops:

1. A for loop: Sets up a counter; repeats a block of statements until thecounter reaches a

specified number. The most basic for loops are based on a counter. You set the

beginning value for the counter, set the ending value, and set how the counter is

incrementedeach time the statement block is executed. The general format is as

follows:

for (startingvalue;endingcondition;increment)

{

block of statements;

}

Within the for statement, you need to fill in the following values:

i. startingvalue: The startingvalueis a statement that sets up a variableto be your

counter and sets it to your starting value. For example,the statement $i=1; sets $i

as the counter variable and sets it equal to 1.Frequently, the counter variable is

started at 0 or 1. The starting value canbe a number, a combination of numbers

(like 2 + 2), or a variable.

ii. endingcondition: The endingconditionis a statement that sets your ending value.

As long as this statement is true, the block of statementskeeps repeating. When

this statement is not true, the loop ends. Forexample, the statement $i<10; sets the

ending value for the loop to 10.When $i is equal to 10, the statement is no longer

true (because $i is nolonger less than 10), and the loop stops repeating. The

statement caninclude variables, such as $i<$size;.

iii. increment: A statement that increments your counter. For example, thestatement

$i++; adds 1 to your counter at the end of each block of statements.You can use

other increment statements, such as $i=+1; or $i—;.A basic for loop sets up a

variable, like $i, that is used as a counter. Thisvariable has a value that changes

during each loop. The variable $i can beused in the block of statements that is

repeating.

For example, the followingsimple loop displays Hello World! three times:

for ($i=1;$i<=3;$i++)

{

echo ―$i. Hello World!
‖;

}

The statements in the block do not need to be indented. PHP doesn‘t carewhether

they‘re indented. However, indenting the blocks makes it mucheasier for you to

understand the script.

You can nest for loops inside of for loops. Suppose you want to print outthetimes

tables from 1 to 9. You can use the following statements:

for($i=1;$i<=9;$i++)

{

echo ―\nMultiply by $i \n‖;

for($j=1;$j<=9;$j++)

{

$result = $i * $j;

echo ―$i x $j = $result\n‖;

}

}

The output is as follows:

Multiply by 1

1 x 1 = 1

1 x 2 = 2

...

1 x 8 = 8

1 x 9 = 9

Multiply by 2

2 x 1 = 2

2 x 2 = 4

...

2 x 8 = 16

2 x 9 = 18

Multiply by 3

3 x 1 = 3

and so on.

1.11.4 A while loop: Sets up a condition; checks the condition, and if it‘s true,repeats

a block of statements until the condition becomes false.

A while loop continues repeating as long as certain conditions are true. The loop

works a as follows:

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the loop stops.

The following is the general format of a while loop:

while (condition)

{

block of statements

}

The following statements set up a while loop that looks through an array for an apple:

$fruit = array (―orange‖, ―apple‖, ―grape‖);

$testvar = ―no‖;

$k = 0;

while ($testvar != ―yes‖)

{

if ($fruit[$k] == ―apple‖)

{

$testvar = ―yes‖;

echo ―apple\n‖;

}

else

{

echo ―$fruit[$k] is not an apple\n‖;

}

$k++;

}

These statements generate the following output:

orange is not an apple

apple

It‘s possible to write a while loop that is infinite — that is, a loop that loops forever.

You can easily, without intending to, write a loop in which the condition is always

true. If the condition never becomes false, the loop never ends.

1.11.5 A do..while loop: Sets up a condition; executes a block of statements;checks

the condition; if the condition is true, repeats the block of statementsuntil the

condition becomes false

A do..while loop is very similar to a while loop. Like a while loop, ado..while loop

continues repeating as long as certain conditions are true.Unlike while loops,

however, those conditions are tested at the bottom ofeach loop. If the condition is

true, the loop repeats. When the condition isnot true, the loop stops.

The general format for a do..while loop is as follows:

do

{

block of statements

} while (condition);

The following statements set up a loop that looks for an apple. This scriptdoes the

same thing as the script in the preceding section that uses a whileloop:

$fruit = array (―orange‖, ―apple‖, ―grape‖);

$testvar = ―no‖;

$k = 0;

do

{

if ($fruit[$k] == ―apple‖)

{

$testvar = ―yes‖;

echo ―apple\n‖;

}

else

{

echo ―$fruit[$k] is not an apple\n‖;

}

$k++;

} while ($testvar != ―yes‖);

The output of these statements in a browser is as follows:

orange is not an apple

apple

This is the same output shown for the while loop example. The differencebetween a

while loop and a do..While loop is where the condition is checked.In a while loop, the

condition is checked at the top of the loop. Therefore, theloop will never execute if

the condition is never true. In the do..while loop, the condition is checked at the

bottom of the loop. Therefore, the loop alwaysexecutes at least once, even if the

condition is never true.

For example, in the preceding loop that checks for an apple, suppose theoriginal

condition is set to yes, instead of no, by using this statement:

$testvar = ―yes‖;

The condition tests false from the beginning. It is never true. In a while loop,there is

no output. The statement block never runs. However, in a do..while loop, the

statement block runs once before the condition is tested. Thus, thewhile loop produces

no output, but the do..while loop produces the followingoutput:

orange is not an apple

The do..while loop produces one line of output before the condition istested. It does

not produce the second line of output because the conditiontests false.

1.12 Comments in PHP

A comment is something which is ignored and not read or executed by PHP engine or the

language as part of a program and is written to make the code more readable and

understandable. These are used to help other users and developers to describe the code and

what it is trying to do. It can also be used in documenting a set of code or part of a program.

PHP supports two types of comment:

1.12.1 Single Line Comment: As the name suggests these are single line or short relevant

explanations that one can add in there code. To add this, we need to begin the line with (//)

or(#).

Example:

<?php

// This is a single line comment

// These cannot be extended to more lines

echo "hello world!!!";

This is also a single line comment

?>

Output:

hello world!!!

1.12.2 Multi-line or Multiple line Comment: These are used to accommodate multiple

lines with a single tag and can be extended to many lines as required by the user. To

add this, we need to begin and end the line with (/*…*/)

<?php

/* This is a multi line comment

 In PHP variables are written by adding a $ sign at the

beginning.*/

$geek = "hello world!";

echo $geek;

?>

Output:

hello world!

1.13 Pre-defined Functions in PHP (Built in Functions):
Built in functions are functions that exist in PHP installation package.These built in functions

are what make PHP a very efficient and productive scripting language. The built in functions

can be classified into many categories. Below is the list of the categories.

1.13.1 String Functions(Manipulating Strings):
PHP provides many built-in functions for manipulating strings.Using PHP functions,

you can find substringsor characters, replace part of a string with different characters, take

astring apart, count the length of a string, and perform many other stringmanipulations.

Often you want to remove blank spaces before or after a string. You canremove leading or

trailing spaces by using the following statements:

$string = trim($string) # removes leading & trailing spaces

$string = ltrim($string) # removes leading spaces

$string = rtrim($string) # removes trailing spaces

PHP can help you split a string into words, which is often handy. The generalform of this

function is as follows:

str_word_count(―string‖,format)

In this expression, format can be 1, meaning return the words as a numericarray; or 2,

meaning return the words as an array where the key is the positionof the first character of the

word.Ifyou don‘t include a format, the function returns the number of words.

The table below shows the common PHP string functions

Function Description Example Output

Strtolower Used to convert all string

characters to lower case letters

echo strtolower('Benjamin'); outputs benjamin

Strtoupper Used to convert all string

characters to upper case letters

echo strtoupper('george w

bush');

outputs GEORGE W

BUSH

Strlen The string length function is

used to count the number of

character in a string. Spaces in

between characters are also

counted

echo strlen('united states of

america');

24

Explode Used to convert strings into an

array variable

$settings = explode(';',

"host=localhost; db=sales;

uid=root; pwd=demo");

print_r($settings);

Array ([0] =>

host=localhost [1]

=>db=sales [2]

=>uid=root [3]

=>pwd=demo)

Substr Used to return part of the string.

It accepts three (3) basic

parameters. The first one is the

string to be shortened, the

second parameter is the position

of the starting point, and the

third parameter is the number of

characters to be returned.

$my_var = 'This is a really

long sentence that I wish to

cut

short';echosubstr($my_var,0,

12).'...';

This is a re...

str_replace Used to locate and replace

specified string values in a given

string. The function accepts

three arguments. The first

argument is the text to be

replaced, the second argument is

echo str_replace ('the', 'that',

'the laptop is very expensive');

that laptop is very

expensive

Function Description Example Output

the replacement text and the

third argument is the text that is

analyzed.

Strops Used to locate the and return the

position of a character(s) within

a string. This function accepts

two arguments

echo strpos('PHP

Programing','Pro');

4

sha1 Used to calculate the SHA-1

hash of a string value

echo sha1('password'); 5baa61e4c 9b93f3f0

682250b6cf8331b

7ee68fd8

md5 Used to calculate the md5 hash

of a string value

echo md5('password'); 9f961034ee 4de758

baf4de09ceeb1a75

str_word_count Used to count the number of

words in a string.

echo str_word_count ('This is

a really long sentence that I

wish to cut short');

12

Ucfirst Make the first character of a

string value upper case

echo ucfirst('respect'); Outputs Respect

Lcfirst Make the first character of a

string value lower case

echo lcfirst('RESPECT'); Outputs rESPECT

Numeric Functions

Numeric functions are function that return numeric results.Numeric php function can be used

to format numbers, return constants, perform mathematical computations etc.The table

below shows the common PHP numeric functions

Function Description Example Output

is_number Accepts an argument and

returns true if its numeric

and false if it’s not

<?php

if(is_numeric("guru"))

{

 echo "true";

}

else

{

 echo "false";

}

?>

false

<?php

if(is_numeric (123))

{

 echo "true";

}

else

{

 echo "false";

true

Function Description Example Output

}

?>

number_format Used to formats a numeric

value using digit separators

and decimal points

number_format(2509663);

2,509,663

Rand Used to generate a random

number.

echo rand(); Random number

Round Round off a number with

decimal points to the

nearest whole number.

echo round(3.49); 3

Sqrt Returns the square root of a

number

echo sqrt(100); 10

Cos Returns the cosine echo cos(45); 0.52532198881773

Sin Returns the sine echo sin(45); 0.85090352453412

Tan Returns the tangent echo tan(45);

1.6197751905439

Pi Constant that returns the

value of PI

echo pi();

3.1415926535898

1.13.2 Dates and Times

Dates and times can be important elements in a script. PHP has the ability torecognize dates

and times and handle them differently than plain characterstrings. The computer stores dates

and times in a format called a timestamp,which is expressed entirely in seconds. However,

because this is an impracticalformat for humans to read, PHP converts dates from your

notation into atimestamp the computer understands and from a timestamp into a format thatis

familiar to people. PHP handles dates and times by using built-in functions.

The timestamp format is a UNIX Timestamp, an integer that is the number ofseconds from

January 1, 1970 00:00:00 GMT to the time represented by thetimestamp. This format makes

it easy to calculate the time between twodates — just subtract one timestamp from the other.

Formatting dates

The function you will use most often is date. The date function converts adate or time from

the timestamp format into a format you specify. The generalformat is as follows:

$mydate = date(―format‖,$timestamp);

$timestamp is a variable with a timestamp stored in it. You previously storedthe timestamp in

the variable by using a time or mktime, as described in thenext section. If $timestamp is not

included, PHP obtains the current timefrom the operating system. Thus, you can get today‘s

date with the followingstatement:

$today = date(―Y/m/d‖);

If today is March 10, 2004, this statement returns:

2004/03/10

The format is a string that specifies the date format you want stored in thevariable. For

example, the format ―y-m-d‖ returns 04-3-10, and ―M.d.Y‖returns Mar.10.2004. Table 5-4

lists some of the symbols that you can use inthe format string. The parts of the date can be

separated by hyphens (-), dots(.), slashes (/), or spaces.

Symbol Meaning Example

M Month in text, abbreviated Jan

F Month in text not abbreviated January

M Month in numbers with leading zeros 02 or 12

N Month in numbers without leading zeros 1 or 12

D Day of the month; two digits with leading zeros 01 or 14

J Day of the month without leading zeros 3 or 30

L Day of the week in text not abbreviated Friday

D Day of the week in text as an abbreviation Fri

W Day of the week in numbers from 0 (Sunday)

to 6 (Saturday)

5

Y Year in four digits 2004

Y Year in two digits 04

G Hour between 0 and 12 without leading zeros 2 or 10

G Hour between 0 and 24 without leading zeros 2 or 15

H Hour between 0 and 12 with leading zeros 01 or 10

H Hour between 0 and 12 with leading zeros 00 or 23

I Minutes 00 or 59

S Seconds 00 or 59

A am or pm in lowercase am

A AM or PM in uppercase AM

U Unix seconds 1056244941

Storing a timestamp in a variable

You can assign a timestamp with the current date and time to a variable withthe following

statement:

$today = time();

Another way to store a current timestamp is with the following statement:

$today = strtotime(―today‖);

You can store a specific date and time as a timestamp by using the function mktime. The

format is

$importantDate = mktime(h,m,s,mo,d,y);

whereh is hours, m is minutes, s is seconds, mois month, d is day, and y isyear. For example,

you would store the date January 15, 2003, by using thefollowing statement:

$importantDate = mktime(0,0,0,1,15,2003);

You can also store specific timestamps by using strtotime with various keywords and

abbreviations that are very much like English. For instance, youcan create a timestamp for

January 15, 2003, as follows:

$importantDate = strtotime(―January 15 2003‖);

strtotime recognizes the following words and abbreviations:

_ Month names: Twelve month names and abbreviations

_ Days of the week: Seven days and some abbreviations

_ Time units: Year, month, fortnight, week, day, hour, minute, second;am, pm

_ Some useful English words: Ago, now, last, next; this, tomorrow,yesterday

_ Plus and minus: + or -

_ All numbers

_ Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific

Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a variety of ways. The followingstatements

are all valid:

$importantDate = strtotime(―tomorrow‖); #24 hours from now

$importantDate = strtotime(―now + 24 hours‖);

$importantDate = strtotime(―last saturday‖);

$importantDate = strtotime(―8pm + 3 days‖);

$importantDate = strtotime(―2 weeks ago‖); # at current time

$importantDate = strtotime(―next year gmt‖); #1 year from now

$importantDate = strtotime(―tomorrow 4am‖);

You can find differences between timestamps by using subtraction. For example,if

$importantDate is in the past and you want to know how long ago$importantDate was, you

can subtract it from the variable $today youdefined earlier. For example:

$timeSpan = $today - $importantDate;

This gives you the number of seconds between the important date and today.

You can also use the following statement to find out how many hours havetranspired since

the important date:

$timeSpan=(($today - $importantDate)/60)/60;

Questions

1 Define PHP. What these tags specify in PHP <?php and ?> 5

2 Can we run PHP from HTML file? If yes, how? 5

3 Why PHP is known as scripting language? 5

4 Write a program in PHP to calculate Square Root of a number. 5

5 List different data types and explain with example. 5

6 Explain comments in PHP 5

7 List different operators and explain with example. 5

8 Write the name of PHP functions that can be used to build a function that accepts any number of arguments 5

9 Explain in details predefined functions 5

10 Explain various date and time formats. 5

11 Write a PHP script to compute factorial of n using while or for loop 5

12 Write a PHP script to display Fibonacci of length 10 5

13 Write a short note on Scope of Variables 5

14 List different loops used in PHP in details 5

15 List different decision making used in PHP in details 5

16 What is the function of for-each construct in PHP? 5

17 Explain various Math function available in PHP. 5

18 Differentiate While and Do-While statement 5

Chapter 2. PHP FORM HANDLING

Learning Objectives:
After successful completion of this unit, you will be able to

6. Summarize strings data typein PHP

7. Summarizearrays in PHP.

8. Understand GET ,POST and REQUEST methods.

9. Learn and evaluate fields reading from HTML.

10. Paraphrase PHP validation.

This chapter will introduce you to strings and arrays in PHP. This chapter will let you poke

around the different methods like GET, POST and REQUEST and also help retrieve data

from HTML form. Learn validations involved in PHP.

2.1 Strings

 In any programming or scripting language, a string is a sequence of characters written

in Single quote or Double quotes. For example, "Hello Friend!" is a string written in Double

quotes. In this chapter, we will see some commonly used string manipulation functions. The

PHP string functions are part of the PHP core. Installation is not required to use these

functions in PHP.

1) The echo() Function:

 The echo() function is one of the important string functions in the PHP which is used

to display one or more strings on the output window.

Syntax:

 echo(string $str)

Example:

<?php

$str="Hello Friends!";

echo $str;

?>

Output:

Hello Friends!

2) The strtolower() Function::

The strtolower() function returns a string in lowercase letter.

Syntax:

strtolower (string $string)

Example:

<?php

$str="My Name is PARAG";

$str=strtolower($str);

echo $str;

?>

Output:

my name is parag

3) The strtoupper() Function:

The strtoupper() function returns a string in uppercase letter.

Syntax:

string strtoupper (string $string)

Example:

<?php

$str="My Name is Parag";

$str=strtoupper($str);

echo $str;

?>

Output:

MY NAME IS PARAG

4) The ucfirst() Function:

The ucfirst() function returns a string converting the first character into uppercase.

The case of other characters will not be changed.

Syntax:

string ucfirst (string $str)

Example:

<?php

$str="my name is Parag";

$str=ucfirst($str);

echo $str;

?>

Output:

My name is Parag

5) The lcfirst() Function:

The lcfirst() function returns a string converting the first character into lowercase. The

case of other characters will not be changed.

Syntax:

string lcfirst (string $str)

Example:

<?php

$str="MY name IS Parag";

$str=lcfirst($str);

echo $str;

?>

Output:

mY name IS Parag

6) The ucwords() Function:

The ucwords() function returns a string converting the first character of each word

into uppercase.

Syntax:

string ucwords (string $str)

Example:

<?php

$str="my name is parag achaliya";

$str=ucwords($str);

echo $str;

?>

Output:

My Name Is Parag Achaliya

7) The strrev() Function:

The strrev() function returns a reversed string.

Syntax:

string strrev (string $string)

Example:

<?php

$str="my name is parag";

$str=strrev($str);

echo $str;

?>

Output:

garap si eman ym

8) The strlen() Function:

The strlen() function returns the length of the string.

Syntax:

int strlen (string $string)

Example:

<?php

$str="my name is Parag Achaliya";

$str=strlen($str);

echo $str;

?>

Output:

25

9) The strcmp() Function:

 String comparison is one of the most common tasks in any programming. strcmp() is

a built-in string comparison function in PHP. It is case sensitive means it treats uppercase and

lowercase separately. This function compares two strings and tells whether a string is greater,

smaller, or equal to another string.

Syntax:

 strcmp($str1,$str2)

Parameters

The strcmp() function requires two strings parameter. Both the parameters are

mandatory to pass in the function.

Value return by strcmp()

This function returns an integer value based on the comparison.

It returns 0 if both strings are equal, i.e., $str1 = $str2

It returns negative value if string1 is less than string2, i.e., $str1 < $str2

It returns positive value if string1 is greater than string 2, i.e., $str1 > $str2

Example:

<?php

echo strcmp("Hello ", "HELLO"). " because the first string is greater than the second

string.";

echo "</br>";

echo strcmp("Hello world", "Hello world Hello"). " because the first string is less than

the second string.";

?>

Output:

1 because the first string is greater than the second string.

-6 because the first string is less than the second string.

Remark: Second output has returned -6 because the first string is smaller than 6 characters

by the second string, including whitespace.

String1 String2 Output Explanation

Hello Hello 0 Both the strings are equal.

Hello hello -1 String1 < String2 because the ASCII value of H is 72 and

the ASCII value of h is 104 so H < h.

hello Hello 1 String1 > String2 because the ASCII value of H is 72 and

the ASCII value of h is 104 so H > h.

Hello

PHP

Hello 4 String1 > String2 because the String1 is greater than the

String2 by 6 characters including the whitespace.

hello Hello

PHP

1 String1 > String2 because the ASCII value of H is 72 and

the ASCII value of h is 104 so H < h.

Hello Hello

PHP

-4 String1 < String2 because the String1 is smaller than the

String2 by 4 characters including whitespace.

10) The print() Function:

 print() function is used to print one or more strings on the output window.

Syntax:

int print (string $arg);

Example:

<?php

$str = "Hello PHP!";

print $str;

print "
PHP is the Server Side Scripting Language";

?>

Output:

Hello PHP!

PHP is the Server Side Scripting Language

11) The printf() Function:

The printf() function is a predefined PHP function. It is used to print the formatted

string on the output window. This function takes different parameters as format, arg1, arg2,

arg++ percent (%) signs in the main format parameter.

Syntax:

printf(format,arg1,arg2,arg++);

Parameter Description Required/

Optional

format Specifies the string. Different possible format values are:

● %% - Returns a percent sign

● %b : Binary number

● %c : The character according to the ASCII value

● %d : Signed decimal number (negative, zero or

positive)

● %e : Scientific notation using a lowercase (e.g. 1.2e+2)

● %E : Scientific notation using a uppercase (e.g.

1.2E+2)

● %u : Unsigned decimal number (equal to or greater

than zero)

● %f : Floating-point number (local settings aware)

● %F : Floating-point number (not local settings aware)

● %g : shorter of %e and %f

● %G : shorter of %E and %f

● %o : Octal number

● %s : String

● %x : Hexadecimal number (lowercase letters)

● %X : Hexadecimal number (uppercase letters)

Required

arg1 Argument to be inserted at first %-sign. Required

arg2 Argument to be inserted at second %-sign. Optional

arg++ Argument to be inserted at third, fourth, etc. %s sign Optional

Example:

<?php

$version = 7;

$str = "YCMOU";

printf("We are learning PHP %u at %s.",$version,$str);

?>

Output:

We are learning PHP 7 at YCMOU.

12) The stripos() Function:

The stripos() is a predefined PHP function. It is used to find the position of the first

occurrence of a string inside another string.

Syntax:

stripos(string,find,start);

Parameter Description Required/ Optional

string Specify the string to search. Required

find Specify the string to find. Required

start Specify where to begin the search. Optional

Example:

<?php

 echo stripos("PHP is Server Side Scripting Language, I love PHP","PHP");

?>

Output:

0

13) The substr() Function:

The substr() is a built-in PHP function. This function returns a part of a string

specified by the start and length parameter. This function is supported in PHP 4 and above

versions.

Syntax:

substr($string, $start, $length)

Parameter Description Required/ Optional

string Specify the string to find its substring. Required

start Specifies from where to start extraction the string Required

length Length of string to be cut from the main string Optional

Return Values

The substr() function returns an extracted part of the string on successful execution.

Otherwise, it will return the FALSE or empty string on failure.

Example: 1

<?php

 echo substr("Hello PHPTutorial", 3). "</br>";

 echo substr("Hello PHPTutorial", 0). "</br>";

 echo substr("Hello PHPTutorial", 9). "</br>";

 echo substr("Hello PHPTutorial", -4). "</br>";

 echo substr("Hello PHPTutorial", -10). "</br>";

 echo substr("Hello PHPTutorial", -16). "</br>";

?>

Output:

lo PHPTutorial

Hello PHPTutorial

Tutorial

rial

HPTutorial

ello PHPTutorial

Example: 2

<?php

 echo substr("Hello PHPTutorial", 3, 8). "</br>";

 echo substr("Hello PHPTutorial", 0, 9). "</br>";

 echo substr("Hello PHPTutorial", 6, -4). "</br>";

 echo substr("Hello PHPTutorial", 4, -7). "</br>";

 echo substr("Hello PHPTutorial", -6, -10). "</br>";

 echo substr("Hello PHPTutorial", -6, -1). "</br>";

?>

Output:

lo PHPTu

Hello PHP

PHPTuto

o PHPT

toria

14) The str_word_count() Function:

The str_word_count() PHP function is used to count the number of words in a string.

Syntax:

str_word_count($str)

Example:

<?php

$str = "Hello My Dear Friends!";

$wcount = str_word_count($str);

echo "No. of words in $str are ".$wcount;

?>

Output:

 No. of words in Hello My Dear Friends! are 4

2.2 Arrays

 An array is a special variable in any programming or scripting language which can

store more than one value at a time. For example, if you have a list of fruits, storing the fruits

in single variable could look like this:

$fruit1 = "Banana";

$fruit2 = "Mango";

$fruit3 = "Apple";

This is possible for a small amount of list items. But what if you want to store more

than 10 fruits or if you want to access a specific list item? In that case, it is not advisable to

have the variables as shown in above example. The best possible solution for the said

problems would be using an Array. An array can store multiple values using a single name,

and you can access these values by referring to the index number.

Create an Array in PHP:

In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

1. Indexed arrays - Arrays with a numeric index

2. Associative arrays - Arrays with named keys

3. Multidimensional arrays - Arrays containing one or more arrays

Example:

An array of fruits can be created for above example as shown below,

 $fruits = array("Banana", "Mango", "Apple");

The count() Function:

The count() function of an array is used to return the length i.e. the number of

elements stored in an array.

Syntax:

 count(array);

Example:

<?php

$fruits = array("Banana", "Mango", "Apple");

echo count($fruits);

?>

Output:

 3

2.2.1 Indexed Arrays:

An index in an array in the numerical value assigned to every element of an array.

The Indexed Arrays in PHP can be created in two different ways,

1. The index can be assigned automatically as shown in below example. In this case, the

index will automatically start from 0 by default.

$fruits = array("Banana", "Mango", "Apple");

2. The index can be assigned manually as shown in below example:

$fruits[0] = "Banana";

$fruits[1] = "Mango";

$fruits[2] = "Apple";

Example:

<?php

$fruits = array("Banana", "Mango", "Apple");

echo "My favourite fruits are " . $fruits[0] . ", " . $fruits[1] . " and " . $fruits[2] . ".";

?>

Output:

 My favourite fruits are Banana, Mango and Apple.

2.2.2 Associative Arrays:

In PHP, the associative arrays are the other types of arrays that use named keys that

are assigned to them. The associative arrays can be created in two different ways,

1. As shown in below example,

 $age = array("Parag"=>"34", "Vivek"=>"35", "Monali"=>"35");

2. As shown in below example,

$age['Parag'] = "34";

$age['Vivek'] = "35";

$age['Monali'] = "35";

Example:

<?php

$age = array("Parag"=>"34", "Vivek"=>"35", "Monali"=>"35");

echo "Parag is " . $age['Parag'] . " years old.";

?>

Output:

 Parag is 34 years old.

2.2.3 Multidimensional Arrays:

In the previous sections, we have seen the arrays that are a single list of key and value

pairs. But, sometimes you may want to store values that can have more than one key and its

value. For this, we can use the multidimensional arrays. A multidimensional array is an array

having one or more arrays. PHP supports multidimensional arrays that are two, three, four, or

more levels deep. But, the arrays more than three levels deep are difficult to manage.

Two-dimensional Arrays:

A two-dimensional array is an array of arrays (Similarly, a three-dimensional array is

an array of arrays of arrays and so on).

Example:

Consider the following table as an example,

Name Stock Sold

Hyundai 23 20

Honda 14 11

Maruti 7 4

Kia 11 7

We can store the above table data in a two-dimensional array like this:

$cars = array (

array("Hyundai", 23, 20),

array("Honda", 14, 11),

array("Maruti", 7, 4),

array("Kia", 11, 7)

);

Now the above two-dimensional $cars array contains four sub arrays and it has two indices:

row and column. To access the elements of the $cars array, we must point to the two indices

(row and column) as shown in below example:

<?php

echo $cars[0][0].": In stock: ".$cars[0][1].", sold: ".$cars[0][2].".
";

echo $cars[1][0].": In stock: ".$cars[1][1].", sold: ".$cars[1][2].".
";

echo $cars[2][0].": In stock: ".$cars[2][1].", sold: ".$cars[2][2].".
";

echo $cars[3][0].": In stock: ".$cars[3][1].", sold: ".$cars[3][2].".
";

?>

Output:

Hyundai: In stock: 23, sold: 20.

Honda: In stock: 14, sold: 11.

Maruti: In stock: 7, sold: 4.

Kia: In stock: 11, sold: 7.

Sorting Array:

The elements of an array can be sorted in alphabetical or numerical order as well as in

descending or ascending order. In this section, we will see the various built-in array sorting

functions available in the PHP.

1) The sort() Function:

This function will sort the array in ascending order.

Example:

<?php

$fruits = array("Mango", "Banana", "Apple");

sort($fruits);

$length = count($fruits);

for($i = 0; $i < $length; $i++) {

echo $fruits[$i];

echo ", ";

}

?>

Output:

 Apple, Banana, Mango,

2) The rsort() Function:

This function will sort the array in descending order

Example:

 <?php

$fruits = array("Mango", "Banana", "Apple");

rsort($fruits);

$length = count($fruits);

for($i = 0; $i < $length; $i++) {

echo $cars[$i];

echo ", ";

}

?>

Output:

Mango, Banana, Apple,

3) The asort() Function:

This function will sort the associative arrays in ascending order, according to the

value.

Example:

 <?php

$age = array("Parag"=>"34", "Vivek"=>"36", "Monali"=>"35");

asort($age);

foreach($age as $i => $i_value) {

echo "Key=" . $i . ", Value=" . $i_value;

echo "
";

}

?>

Output:

 Key=Parag, Value=34

Key=Monali, Value=35

Key=Vivek, Value=36

4) The ksort() Function:

This function will sort the associative arrays in ascending order, according to the key.

Example:

 <?php

$age = array("Parag"=>"34", "Vivek"=>"36", "Monali"=>"35");

ksort($age);

foreach($age as $i => $i_value) {

echo "Key=" . $i . ", Value=" . $i_value;

echo "
";

}

?>

Output:

 Key=Monali, Value=35

Key=Parag, Value=34

Key=Vivek, Value=36

5) The arsort() Function:

This function will sort the associative arrays in descending order, according to the

value.

Example:

 <?php

$age = array("Parag"=>"34", "Vivek"=>"36", "Monali"=>"35");

arsort($age);

foreach($age as $i => $i_value) {

echo "Key=" . $i . ", Value=" . $i_value;

echo "
";

}

?>

Output:

Key=Vivek, Value=36

 Key=Monali, Value=35

Key=Parag, Value=34

6) The krsort() Function:

This function will sort the associative arrays in descending order, according to the

key.

Example:

 <?php

$age = array("Parag"=>"34", "Vivek"=>"36", "Monali"=>"35");

krsort($age);

foreach($age as $i => $i_value) {

echo "Key=" . $i . ", Value=" . $i_value;

echo "
";

}

?>

Output:

Key=Vivek, Value=36

 Key=Monali, Value=35

Key=Parag, Value=34

2.3 GET, POST and REQUEST Methods:

The Hypertext Transfer Protocol (HTTP) is designed to establish the communications

between clients and servers. It works on request-response protocol between client and server.

For example: If a client, let‘s say a browser, sends an HTTP request to the server; then that

server returns a response to its client. The response will contain the status information about

the request and may also contain the requested content of the client. Various HTTP methods

are responsible for establishing the communication between such clients and the server.

HTTP Methods:

● GET

● PUT

● POST

● HEAD

● PATCH

● DELETE

● OPTIONS

The two most common HTTP methods are: GET and POST.

2.3.1 GET Method:

The GET method is used to request the data from the specified resource. It is one of

the most commonly used HTTP methods in HTML forms. In case of GET method, the query

string of name/value pairs is sent in the URL like this:

/sample/test_form.php?name1=value1&name2=value2

The GET method sends the user information in encoded form appended with the page

request. This page and the encoded information are separated by the ? character as shown in

above example.

Some important points about GET method:

● The GET method produces a long string that appears in server logs.

● The GET method can send upto 1024 characters only.

● If you want to send a password or other sensitive information to the server, in that

case never use the GET method.

● Binary data, like images or word documents, can't be sent using the GET method.

● PHP provides a $_GET array to access all the sent information using the GET

method.

Example:

<html>

 <body>

 <form action = "<?php $_PHP_SELF ?>" method = "GET">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

 </body>

</html>

<?php

 if($_GET["name"] || $_GET["age"]) {

 echo "Welcome ". $_GET['name']. "
";

 echo "You are ". $_GET['age']. " years old.";

 exit();

 }?>

Output:

Fig. 2.1: HTML Form using GET Method [1]

2.3.2 POST Method:

The POST method is used to send the data to the server. It is used to create or update

the resource. The data sent to the server using POST method is stored in the request body of

the HTTP request. Like the GET method, POST method is also one of the most common

HTTP methods.

Some important points about POST method:

● The POST method can send the data of any size.

● The POST method can send ASCII as well as binary data.

● HTTP header is used to send the data by POST method. So the data security depends

on the HTTP protocol. By using Secure HTTP, the information security can be

obtained.

● PHP provides a $_POST array to access all the sent information using POST method.

Example:

<html>

 <body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

 </body>

</html>

<?php

 if($_POST["name"] || $_POST["age"]) {

 if (preg_match("/[^A-Za-z'-]/",$_POST['name'])) {

 die ("Invalid name, it should be alpha");

 }

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

?>

Output:

Fig. 2.2: HTML Form using POST Method [1]

Difference between GET and POST Methods:

Parameter GET POST

BACK button/

Reload

Harmless Data will be re-submitted

Bookmarked Can be bookmarked Cannot be bookmarked

Cached Can be cached Can not be cached

Encoding type application/x-www-form-

urlencoded

application/x-www-form-

urlencoded or multipart/form-data.

Use multipart encoding for binary

data

History Parameters are saved in browser

history

Parameters are not saved in browser

history

Restrictions on

data length

Yes. (Maximum URL length is

2048 characters)

No restrictions

Restrictions on

data type

Only ASCII characters allowed No restrictions. Binary data is also

allowed

Security GET is less secure because data POST is a little safer because the

sent is part of the URL. (Never use

GET when sending passwords or

other sensitive information)

parameters are not stored in browser

history or in web server logs.

Visibility Data is visible to everyone in the

URL

Data is not displayed in the URL

2.3.3. REQUEST Method:

The $_REQUEST variable of PHP contains the contents of $_GET, $_POST, and

$_COOKIE. It can be used to get the result from form data sent using the GET and POST

methods of PHP.

Example:

<html>

 <body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

 </body>

</html>

<?php

 if($_REQUEST["name"] || $_REQUEST["age"]) {

 echo "Welcome ". $_REQUEST['name']. "
";

 echo "You are ". $_REQUEST['age']. " years old.";

 exit();

 }

?>

Output:

Fig. 2.3: HTML Form using REQUEST Method [1]

2.4 Reading Fields from HTML

The $_POST is a PHP super global variable. It is used to collect the form data after

submitting an HTML form. This can be done with the method="post" and the $_POST is

used to pass the variables.

Example:

<html>

<body>

<form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST")

{

 $name = $_POST['fname'];

 if (empty($name)) {

 echo "Name is empty";

 }

else

{

 echo $name;

}

}

?>

</body>

</html>

In the above example, a form with an input field and a submit button is created using

HTML tags. When any user will submit the data by clicking on the "Submit" button, the form

data is sent to the specified file mentioned in the action attribute of the <form>. In this

example, the file has been pointed to itself for processing the form data. If you want to use

another PHP file to process form data, replace that file with the filename of your choice.

After that, the super global variable $_POST can be used to collect the value of the input

field.

 The $_GET is also a PHP super global variable like $_POST. It is also used to collect

the form data after submitting an HTML form. This can be done with the method="get" and

the $_GET is used to pass the variables. The above example can also be used to the fields

from HTML just by replacing post by get everywhere.

2.5 PHP Validations:

An HTML form can contain various input fields such as text box, radio buttons,

checklist, checkbox, submit button, etc. These input fields should be validated which ensures

that the user has entered some information in all the required fields.

There is no guarantee that the information provided by the user is always correct. PHP

validates the data at the server-side, which is submitted by HTML form. You need to validate

a few things:

1. Empty String

2. Validate String

3. Validate Numbers

4. Validate Email

5. Validate URL

2.5.1 Empty String:

 An error message will be shown on output if the user will leave the required field

empty. The following example checks whether the field is empty or not.

if (empty ($_POST["name"]))

{

$errMsg = "Error! Name can not be empty.";

echo $errMsg;

}

else

{

$name = $_POST["name"];

}

2.5.2 Validate String:

 The following code will check that the field will contain only alphabets and

whitespace, for example - name. An error message will be shown if the name field does not

receive valid input from the user.

$name = $_POST ["name"];

if (!preg_match ("/^[a-zA-z]*$/", $name))

{

$ErrMsg = "Only alphabets and whitespace are allowed in the name.";

echo $ErrMsg;

}

else

{

echo $name;

}

2.5.3 Validate Number:

The following code will validate that the field should only contain a numeric value.

For example, Mobile no. If the Mobile no field does not receive numeric data from the user,

the code will display the error message.

$mobileno = $_POST ["mobile_no"];

if (!preg_match ("/^[0-9]*$/", $mobileno))

{

$ErrMsg = "Only numeric value is allowed in mobile no.";

echo $ErrMsg;

}

else

{

echo $mobileno;

}

2.5.4 Validate Email:

A valid email must have @ and . symbols. PHP provides various methods to validate

the email address. But here, we will use regular expressions to validate the email address. The

following code will validate the email address provided by the user through HTML form and

an error message will be displayed if the field does not contain a valid email address.

$email = $_POST ["email"];

$pattern = "^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$^";

if (!preg_match ($pattern, $email))

{

$ErrMsg = "Invalid Email Id.";

echo $ErrMsg;

}

else

{

echo "Your valid email address is: " .$email;

}

2.5.5 Validate URL:

The following code will validate the URL of the website provided by the user in

HTML form. If the field does not contain a valid URL, the code will display an error

message, i.e., "Invalid URL".

$websiteURL = $_POST["website"];

if (!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-

9+&@#\/%=~_|]/i",$website))

{

$websiteErr = "Invalid URL";

echo $websiteErr;

}

else

{

echo "Website URL is: " .$websiteURL;

}

Questions:

1 How can we create links in PHP pages? 5
2 Difference between include and require? 5
3 Difference between GET and POST methods. 5
4 What is the purpose of “nl2br “string function? 5
5 Write a program to do string manipulation 5
6 Write a short note on REQUEST method 5
7 Write a short note on GET method 5
8 Write a short note on POST method 5
9 Write a short note on Use of substring function. 5

10 What is the purpose of $_PHP_SELF? 5

11 Create HTML form to enter one number. Write PHP code to display the message about number is odd or

even.

5

12 Write a PHP program to accept a positive integer ‗N‘ through a HTML form and to display the sum of all

the numbers from 1 to N

5

13 Write a short note on array. 5
14 Short note on PHP validation 5
15 Write a PHP code for Book store to apply all validation. 5

Chapter 3. File Handling, Session, Cookies in PHP

Learning Objectives:
After successful completion of this unit, you will be able to

11. Summarize file handling in PHP

12. Understand session in PHP.

13. Learn cookies in PHP.

This chapter will introduce you to file handling in PHP. You will learn how to create, open,

read, write, upload and delete files in PHP.

This chapter will let you poke around the different sessions, cookies and filters used in PHP.

3.1 Introduction:

 Any web application needs to be able to handle files. For various tasks, you will often

need to open and process a file. We can use the PHP File System to create files, read them

line by line, character by character, write them, append them, remove them, and close them.

This can be done using various PHP Functions.

3.2 File Open/Read

 In this section, we will see various file open or file read functions available in PHP.

All these functions are built-in in PHP.

3.2.1 fopen():

 The PHP fopen() function opens a file or a URL and returns the resource. The file

name and mode parameters are passed to the fopen() function. File name denotes the file to

be opened, while mode denotes the file mode, such as read-only, read-write, or write-only.

Syntax:

$file = fopen("filename", "mode")

The name of the file to be opened is the first parameter of fopen(), and the second

parameter defines the mode in which the file should be opened. You can open the file in one

of the following ways:

Mode Meaning Description

r Open a file for read only. File pointer begins at the start of the file

w Open a file for write

only.

Removes the file's contents or produces a new one if it

doesn't exist. The file pointer begins at the start of the

file.

a Open a file for write

only.

The data in the file is maintained. The file pointer

begins at the file's end. If the file does not exist, it is

created.

x Create a new file for

write only.

If the file already exists, returns FALSE and an error.

r+ Open a file for read/write. The file pointer begins at the start of the file.

w+ Open a file for read/write. Removes the file's contents or creates a new one if it

doesn't exist. The file pointer begins at the start of the

file.

a+ Open a file for read/write. The data in the file is maintained. The file pointer

begins at the file's end. If the file does not exist, it is

created.

x+ Creates a new file for

read/write.

If the file already exists, returns FALSE and an error.

3.2.2 fread():

 The fread() function reads data from a file that is currently open. The first parameter

of fread() is the filename to read from, and the second is the maximum number of bytes to

read. Following PHP code finishes reading the file:

Syntax:

 fread(file,file_size);

3.2.3 fclose():

To close an open file, use the fclose() function. Closing all files once you've done

with them is good programming practise. You don't want an open file hogging system

resources on your server! The filename or a variable containing the filename we want to close

is required by fclose().

Syntax:

 fclose(filename);

3.2.4 fgets():

 A single line from a file is read using the fgets() function.

Syntax:

 fgets(filename);

3.2.5 feof():

 The feof() function determines whether or not the file has reached the "end-of-file"

(EOF). For looping through data of unknown length, the feof() function is useful.

Syntax:

 feof(filename);

3.2.6 fgetc():

 A single character from a file is read using the fgets() function. The file pointer moves

to the next character after the fgetc() function is called.

Syntax:

 fgetc(filename);

3.3 File Create/Write:

 In this section, we will see various functions available in PHP which are used to

create or write the files. All these functions are built-in in PHP.

3.3.1 fopen():

 A file can also be created using the fopen() function. In PHP, a file is created using

the same feature that opens files, which can be a little confusing. If you call fopen() on a file

that doesn't exist, it will create it if it's being used for writing (w) or appending (a).

Syntax:

 $file = fopen("samplefile.txt", "w")

3.3.2 fwrite():

 To write to a file, the fwrite() function is used. The name of the file to be written to is

the first parameter of fwrite(), and the string to be written is the second.

Syntax:

 fwrite(file, text);

Example:

<?php

$file = fopen("samplefile.txt", "w");

$text = "Parag Achaliya\n";

fwrite($file, $text);

$text = "Vivek Patil\n";

fwrite($file, $text);

fclose($file);

?>

Output:

 Parag Achaliya

 Vivek Patil

3.4 File Deletion:

 The file on your computer can easily be deleted using the Delete button or Shift +

Delete. By simply doing Delete operation, the file will be deleted from the current location &

will be moved to the Recycle Bin. But by doing Shift + Delete operation, the file will be

permanently deleted from the computer. If you want to delete the file using PHP then the

unlink() function will be used. The unlink() function removes a file from the system.

Syntax:

 unlink(file, context)

Parameter Details:

Parameter Description

file Required. Specifies the file to delete with its path

context Optional. The meaning of the file handle is defined. Context is a

collection of choices that can change how a stream behaves.

Example:

<?php

$samplefile = fopen("file.txt","w");

echo fwrite($samplefile,"Hello Friends!");

fclose($samplefile);

unlink("test.txt");

?>

 It returns TRUE upon successful file deletion else FALSE on failure. It works with a

4.0 or higher version of PHP.

3.5 File Upload:

3.5.1 Upload New File

 Uploading files to the server is simple with PHP. However, convenience can be

dangerous, so be cautious while allowing file uploads! We will follow some important steps

for uploading using PHP.

Step 1: First, make sure PHP is set up to accept file uploads. Look for the file uploads

directive in your "php.ini" file and turn it on like this,

 file_uploads = On

Step 2: Create an HTML form that allows users to upload any file they want.

<html>

<body>

<form action="upload.php" method="post">

Upload file:

<input type="file" name="FileUpload" id="FileUpload">

<input type="submit" value="Upload" name="button">

</form>

</body>

</html>

Step 3: Create an "upload.php" file containing the following code of uploading a file.

<?php

$trgt_dir = "uploads/";

$trgt_file = $trgt_dir . basename($_FILES["FileUpload"]["name"]);

$OkUpload = 1;

$FileType = strtolower(pathinfo($trgt_file,PATHINFO_EXTENSION));

if(isset($_POST["button"]))

{

$CheckFile = getimagesize($_FILES["FileUpload"]["temp_name"]);

if($CheckFile !== false)

{

echo "Valid image - " . $check["mime"] . ".";

 $OkUpload = 1;

}

else

{

echo "Invalid image file.";

 $uploadOk = 0;

}

}

?>

Explanation:

● $trgt_dir = "uploads/" - specifies the folder where file is uploaded

● $trgt_file specifies the location of the to-be-uploaded file

● $OkUpload=1 for future use

● $FileType - The file extension is stored in this variable (in lowercase)

● Next, determine if the image file is a genuine image or a forgery.

Note - In the directory where the "upload.php" file is located, create a new directory called

"uploads." The files you've uploaded will be saved there.

3.5.2 Check if File already Exists:

 We'll start by seeing if the to-be-upload file is already available in the "uploads"

folder. If the file is available, an error message will be shown, and the value of $OkUpload is

set to 0 as shown in below code,

if (file_exists($trgt_file))

{

echo "The file is already exists.";

$OkUpload = 0;

}

3.5.3 Limit the File Type:

 Users can only upload JPG, JPEG, PNG, and GIF files using the code below. Before

setting $OkUpload to 0 for all other file types, you'll get an error message.

if($FileType!="jpg" && $FileType!="png" && $FileType!="jpeg"

&&$FileType!="gif")

{

echo "Sorry, only JPG, JPEG, PNG & GIF files are allowed.";

$OkUpload = 0;

}

3.6 Cookies:

 To recognise a user, a cookie is frequently used. A cookie is a tiny file placed on the

user's machine by the server. The cookie will be sent each time the same machine requests a

page via a browser. Cookie values can be created and retrieved using PHP.

3.6.1 Create Cookies:

 The setcookie() function is used to create the cookie.

Syntax:

 setcookie(cookie_name, cookie_value, expire, path, domain, secure, http_only);

In above syntax, the name parameter is the only one that needs to be filled out. The

rest of the parameters are entirely up to you.

3.6.2 Create/Retrieve Cookie:

 Consider the following example of creating the cookie. In this example, the ―user‖

cookie with ―Parag Achaliya‖ value is created. This cookie will expire after 20 days (86400 *

20). The ―/‖ indicates that the cookie will be available on the whole website otherwise you

can select the directory you want. Then we will use the global variable $_COOKIE to retrieve

the value of ―user‖ cookie. We will also use the isset() function to check whether the cookie

is set. Remember, the setcookie() function must be used before the <html> tag.

<?php

$name = "user";

$value = "Parag Achaliya";

setcookie($name, $value, time() + (86400 * 20), "/");

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$name]))

{

echo "Cookie '" . $name . "' is not set!";

}

else

{

 echo "Cookie '" . $name . "' is set!
";

 echo "It‘s value is: " . $_COOKIE[$name];

}

?>

</body>

</html>

3.6.3 Modify Cookie:

 Again set the cookie by using the setcookie() function to modify it.

 <?php

$name = "user";

$value = "Vivek Patil";

setcookie($name, $value, time() + (86400 * 20), "/");

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$name]))

{

echo "Cookie '" . $name . "' is not set!";

}

else

{

 echo "Cookie '" . $name . "' is set!
";

 echo "It‘s value is: " . $_COOKIE[$name];

}

?>

</body>

</html>

3.6.4 Delete Cookie:

 Cookies can be deleted by again using the setcookie() function with expiry date as

shown in following example,

<?php

// set expiry date to one hour ago

setcookie("user", "", time() - 3600);

?>

<html>

<body>

<?php

echo "Cookie 'user' is deleted.";

?>

</body>

</html>

3.7 Sessions:

 A session is a method of storing data in variables that can be used across several

pages. The data is not saved on the user's screen, unlike a cookie. When working with a

programme, you open it, make changes, and then close it. This is similar to a Session. The

computer recognises you. It knows when you start and stop using the programme. However,

there is an issue on the internet: the web server has no idea who you are or what you do

because the HTTP address does not keep track of state. Session variables address this issue

by storing user data that can be used across several pages. Session variables are stored in the

browser before the user closes it. As a result, session variables store information about a

single user and are accessible from all pages in a single programme.

3.7.1 Start Session:

 The session_start() function is used to start the session. The PHP global variable

$_SESSION is used to set session variables. Now, let's create a new PHP page called

"session_example1.php". We'll start a new PHP session and set some session variables in this

section. Remember that the program must start with the session_start() function. Even before

the HTML tags.

<?php

session_start();

?>

<html>

<body>

<?php

$_SESSION["fav_color"] = "Brown";

$_SESSION["fav_animal"] = "Lion";

echo "Session variables are set.";

?>

</body>

</html>

3.7.2 Get the Values of Session Variable:

 Now we will create one more PHP page as "session_example2.php". We'll access the

session data we set on the first page "session_example1.php" from this page. Session

variables are retrieved from the session we open at the start of each page, rather than being

moved to each new page individually. The global variable $_SESSION stores all session

variable values.

<?php

session_start();

?>

<html>

<body>

<?php

// Print session variables which were set in previous example

echo $_SESSION["fav_color"] . " is favorite color.
";

echo $_SESSION["fav_animal"] . " is favorite animal.";

?>

</body>

</html>

3.7.3 Modify Session Variable:

 If you want to modify the session variable then simply overwrite the values of those

variables. Consider the following example. In this example, the value of favourite color is

changed from Brown to Red by simply overwriting it.

<?php

session_start();

?>

<html>

<body>

<?php

// to change a session variable, just overwrite it

$_SESSION["fav_color"] = "Red";

echo $_SESSION["fav_color"].

?>

</body>

</html>

3.7.4 Delete Session:

 The session_unset() and session_destroy() functions are used to delete all global

session variables and destroy the session. Consider the following example,

<?php

session_start();

?>

<html>

<body>

<?php

session_unset(); // delete all session variables

session_destroy(); // destroy the session

?>

</body>

</html>

3.8 Filters:

 External input is validated and sanitised using PHP filters. Validating the data is the

process of determining whether the data is in proper format whereas Sanitizing the data is the

process of removing any illegal character from that data. Many of the functions needed for

verifying user input are included in the PHP filter extension, which is meant to make data

validation easier and faster.

3.8.1 Why to use the filters in PHP?

External input is used by many web applications. Those External inputs can be:

● Cookies

● Server variables

● Web services data

● Results of Database queries

● User inputs submitted via a form

These external data should always be validated. Any invalid data might cause security issues

and cause your website to crash. You can ensure that your application receives the correct

input by using the PHP filters.

3.8.2 Sanitize the String:

 The process of validating the data and sanitizing the data is done by filter_var()

function of PHP. The filter_var() function applies a specified filter to a single variable. This

function takes two parameters:

● The variable you want to check

● The type of check to use

Example:

<?php

$string = "<h2>Hello Friends!</h2>";

$new_string = filter_var($string, FILTER_SANITIZE_STRING);

echo $new_string;

?>

In the above example, filter_var() function with the value

FILTER_SANITIZE_STRING will remove all the HTML tags from the string and will return

the plain string.

3.8.3 Validate the Integer:

 Consider the following example. In this example, filter_var() function is used to

validate the integer using the FILTER_VALIDATE_INT parameter. If the value of variable

is an integer then the program will output: "Valid Integer" else it will output: ―Invalid

Integer‖.

<?php

$var = 7;

if (!filter_var($var, FILTER_VALIDATE_INT) === false)

{

echo("Valid Integer");

}

else

{

 echo("Invalid Integer");

}

?>

 In the above example, one problem may occur if we set the value of $var to 0. It will

show the output as ―Invalid Integer‖ which is not correct. To solve this problem, we need to

do some additional programming as shown in below code,

<?php

$var = 0;

if (filter_var($var, FILTER_VALIDATE_INT) === 0 || !filter_var($var,

FILTER_VALIDATE_INT) === false)

{

echo("Valid Integer");

}

else

{

echo("Invalid Integer");

}

?>

3.8.4 Validate IP Address:

 The filter_var() function can also be used to check if the IP address is valid or not.

This can be done using the FILTER_VALIDATE_IP value in the filter_var() function as

shown in below code,

<?php

$ip_address = "192.168.1.1";

if (!filter_var($ip_address, FILTER_VALIDATE_IP) === false)

{

echo("IP address is valid.");

}

else

{

echo("IP address is invalid.");

}

?>

3.8.5 Sanitize and Validate an Email Address:

 The filter_var() function will first sanitize the variable i.e. it will remove all illegal

characters then it will check whether the email address is valid. This can be done using the

following code,

<?php

$email_id = "achaliya.pncoe@snjb.org";

$email = filter_var($email_id, FILTER_SANITIZE_EMAIL);

if (!filter_var($email, FILTER_VALIDATE_EMAIL) === false)

{

echo("Email address is valid.");

}

else

{

echo("Email address is invalid.");

}

?>

3.8.6 Sanitize and Validate a URL:

 The filter_var() function will first sanitize the variable i.e. it will remove all illegal

characters then it will check whether the URL is valid. This can be done using the following

code,

<?php

$url = "https://paragnachaliya.in/";

$url = filter_var($url, FILTER_SANITIZE_URL);

if (!filter_var($url, FILTER_VALIDATE_URL) === false)

{

echo("URL is valid.");

}

else

{

echo("URL is invalid.");

}

?>

Unit 4

Errors and Exception Handling in PHP

4.1 Learning Objectives

After successful completion of this unit, students will be able to handle Errors as well as

Exception occurred at the time of execution of source code.

4.2 Introduction

An error is an action which is wrong or inappropriate. Sometimes, an error can be the

synonymous with a mistake. In statistics, "error" refers to the difference between the

computed value and the correct value. An error could result in failure. Whereas an

unexpected program result is an exception and it can be handled by program itself. In this

chapter we will see process of errors and exceptions handling in PHP.

4.3 Compilation of Errors and Warning

Generally Error handling process is sequential process involves catching of errors generated

by program followed by taking of correct action. If you would handle errors appropriately

then it may lead to many unexpected consequences. Error handling in PHP is very easy.

Few techniques related to Process of error handling in PHP are mentioned below :

 using die() function

 using set_error_handler()

 using trigger_error()

using die() function :

Consider, the following sample code of opening a file named ―sample.txt‖, If the file

―sample.txt‖ is not present at current location then it will give error as explained in below

mentioned sample code

 \

Sample code 4.3.a

 <?php

 $file=fopen("sample.txt","r"); //file open in read mode

 ?>

Output :

Warning: fopen(sample.txt): failed to open stream: No such file or directory in

/opt/lampp/htdocs/er.php on line 3

Explanation :

It gives warning as file is not exist at the current location.

Solution for the above mentioned code is ,With the help of die() function we can solve this

problem as explained in below mentioned sample code

Sample Code 4.3.b

<?php

if(file_exists("sample.txt")) {

 $file = fopen("sample.txt", "r");

}

else {

 die("Error_File does not exist");

}

?>

Output :

Error_File does not exist

This is one of the simplest way to handle errors

Using set_error_handler() :

Consider Following sample code

Sample Code 4.3.c

<?php

$x=10;

$y=20;

echo($z);

?>

Output :

Notice: Undefined variable: z in /opt/lampp/htdocs/er.php on line 7

Explanation :

Above mentioned sample code generate Notice instead of error

Solution :

using set_error_handler() function we can generate proper error as shown in below mentioned

Sample Code 4.3.d

<?php

function add($errno, $errstr) {

 echo "Error:[$errno] $errstr";

}

set_error_handler("add");

$x=10;

$y=20;

echo($z);

?>

Output :

Error:[8] Undefined variable: z

Using trigger_error() :

using trigger_error() function, it is possible to triggered error anywhere in the program where

we wish to triggered.

Consider the below mentioned sample code

Sample Code 4.3.e

<?php

$x=10;

$y=2.5;

$z=$x/$y;

if ($y>=2){

 trigger_error("Value of y must be less than 2");

}

?>

Output :

Notice: Value of y must be less than 2 in /opt/lampp/htdocs/er.php on line 9

Explanation :

As mentioned in the above sample code if we want that value of denominator must not be

greater than zero then we can triggered the error that Value of y must be less than 2.

Addition to above mentioned methods second parameter could be added to specify an error

level. Consider below mentioned sample codes

Use of E_USER_WARNING as a second parameter :

Source Code 4.3.f

<?php

function div($errno, $errstr) {

 echo "Error:[$errno] $errstr";

}

set_error_handler("div",E_USER_WARNING);

$x=10;

$y=2.5;

$z=$x/$y;

if($y>=2) {

 trigger_error("Value of y must be less than 2",E_USER_WARNING);

}

?>

Output :

Error:[512] Value of y must be less than 2

Use of E_USER_ERROR as a second parameter :

Sample Code 4.3.g

<?php

function div($errno, $errstr) {

 echo "Error:[$errno] $errstr";

}

set_error_handler("div",E_USER_ERROR);

$x=10;

$y=2.5;

$z=$x/$y;

if($y>=2) {

 trigger_error("Value of y must be less than 2",E_USER_ERROR);

}

?>

Output :

Error:[256] Value of y must be less than 2

Use of E_USER_NOTICE as a second parameter :

Sample Code 4.3.h

<?php

function div($errno, $errstr) {

 echo "Error:[$errno] $errstr";

}

set_error_handler("div",E_USER_NOTICE);

$x=10;

$y=2.5;

$z=$x/$y;

if($y>=2) {

 trigger_error("Value of y must be less than 2",E_USER_NOTICE);

}

?>

Output :

Error:[1024] Value of y must be less than 2

Self Test (Multiple Choice Questions):

1. What will be the output of the following code

<?php

$x=5;

$y=10;

if($x>10) {

 $z=$x+$y;

 echo $z;

}

else {

 die("Value x is less than 10 ");

}

?>

Options :

a.15

b.Value x is less than 10

c.10

d.None of above

2.What will be the output of following code

<?php

$x=;

$y=20;

echo $x;

?>

Options :

a.Parse error: syntax error, unexpected ';' in /opt/lampp/htdocs/er.php on line 3

b.Error:[8] Undefined variable: x

c.both a&b

d.None of above

3.What will be the output of following code

<?php

function ($errno, $errstr) {

 echo "Error:[$errno] $errstr";

}

set_error_handler("add",E_USER_ERROR);

$x=10;

$y=3.5;

$z=$x+$y;

if($y>=3) {

 trigger_error("Value of y must be less than 3",E_USER_ERROR);

}

?>

Options :

a.Value of y must be less than 3

b.Error:[256] Value of y must be less than 3

c.Parse error: syntax error, unexpected 'set_error_handler' (T_STRING) in

/opt/lampp/htdocs/er.php on line 7

d.both c&d

4. using _____ function it is possible to triggered error anywhere in the program

a.trigger_error()

b. set_error_handler()

c.die()

d.both a&b

5. trigger_error() have at least ______ no of parameter

a.1 b. 2 c.3 d.None of above

4.4 Parse error : Syntax Error

There are various types of errors and warnings generated after the execution of program.

Parse errors generated dues to missing or Extra parentheses, extra or braces are

unclosed,semicolon is Missing ,quotes are unclosed etc.

Parse error or syntax error :

Parse error or syntax error can generate if the syntax mistake happened. Consider we have

php code stored in sample.php file for this file Parse error: syntax error can be anything like

unexpected ‗{‗ in sample.php or expecting ‗;‘ in sample.php on line 55

Sample Code 4.4.a

<?php

class Subject {

 public $name;

function Input($name) {

 $this->name = $name;

 }

function Show() {

 return $this→name;

 }

}

$PHP=new Subject

$PHP->Input('PHP');

echo $PHP->Show();

?>

Output :

Parse error: syntax error, unexpected '$PHP' (T_VARIABLE) in /opt/lampp/htdocs/hi.php

on line 18

Explanation:

In above mentioned code 4.4.a Semicolon is missing on line 18,it gives Parse error: syntax

error. It does not refer to a quoted "VARIABLE". It means a raw identifier was encountered.

Sample Code 4.4.b

<?php

$x = 10;

y = 20;

$z=$x+$y;

echo $z;

?>

Output:

Parse error: syntax error, unexpected '=' in /opt/lampp/htdocs/hi.php on line 3

Explanation :

In above code 4.4.b Parse error: syntax error, unexpected '=' in /opt/lampp/htdocs/hi.php

on line 3 occurs because $ sign is missing in line 3

We need to solve these errors in different approaches like more regularly look at preceding

lines or comment out the code which causing problems,etc.

Self Test (Multiple Choice Questions):

1. What will be the output of following code

<?php

class Subject {

 public $name;

 function Input($name) {

 $this->name = $name;

 }

 function Show() {

 return $this->name;

 }

}

$PHP=new Subject;

$PHP->Input('php');

echo $PHP->Show();

?>

Options:

a.Parse error: syntax error, unexpected '$PHP' (T_VARIABLE) in

/opt/lampp/htdocs/er.php on line 19

b. php

c.name

d.None of above

2. What will be the output of following code

<?php

$x = 10; $y = 20;

z=$x+$y;

echo $z;

?>

Options :

a.Parse error: syntax error, unexpected '=' in /opt/lampp/htdocs/er.php on line 5

b.Parse error: syntax error, undefined z in /opt/lampp/htdocs/er.php on line 5

c.30

d.None of above

3. unexpected ‗{‗ is a Syntax Error

a. True b. False

4.5 Undefined index

At the time of execution of PHP code you may get an error undefined index.

Sample Code 4.5.a

<?php

$name = $_GET['name'];

$address = $_GET['address'];

echo $name;

echo $address;

?>

Output:

Notice: Undefined index: name in /opt/lampp/htdocs/hi.php on line 4

Notice: Undefined index: address in /opt/lampp/htdocs/hi.php on line 5

Explanation :

In sample code 4.5.a values are not assigned to variable $name and $ address therefore it

gives Notice of Undefined index

This error can be solved using isset () function as shown in sample code 4.5.b

Sample Code 4.5.b

<?php

if(isset($_GET['name'])){

 $name = $_GET['name'];

 }

else{

 $name = "Name not set";

 }

if(isset($_GET['address'])){

 $address = $_GET['address'];

 }

else{

 $address = "
Address not set ";

 }

echo $name;

echo $address;

?>

Output :

Name not set

Address not set

4.6 Error Reporting :

To specify which type of error is reported error_reporting() function is used. Errors are

having many levels using error_reporting() function one can set the level of reporting.

For example,

error_reporting(0) indicates that all error reporting are turn off.

error_reporting(E_ERROR | E_WARNING | E_PARSE) indicates that simple errors are

running.

4.7 Exception Handling

With the help of exception handling we can change the flow of the execution of program in

case of exception condition occurs.

Like other object oriented programming language exception handling in PHP is very simple

PHP also provides different keywords to handle exception in PHP as mentioned below

try : It is a block of code where we can code for which exception can occur

catch : If in case any exception is thrown catch block is responsible to execute that particular

exception

throw : This block is use to throw exception

finally : This block is use after the catch block

Sample Code 4.7.a

<?php

function Sample($value) {

 try {

 if($value == 5) {

 throw new Exception('Number is 5 </br>');

 }

 }

 catch(Exception $e) {

 echo "</br>Exception Caught properly ", $e->getMessage();

 }

 echo "</br>This statement after catch will be always executed";

}

Sample(55);

Sample(5);

?>

Output :

This statement after catch will be always executed

Exception Caught properly Number is 5

This statement after catch will be always executed

Sample Code 4.7.b

<?php

function Sample($value) {

 try {

 if($value == 5) {

 throw new Exception('Number is 5 </br>');

 }

 }

 catch(Exception $e) {

 echo "</br>Exception Caught properly ", $e->getMessage();

 }

 finally {

 echo "This block clean all the activity ";

 }

}

Sample(55);

Sample(5);

?>

Output :

This block clean all the activity

Exception Caught properly Number is 5

This block clean all the activity

Use of Exceptions

When any exception is thrown, the code next to it will not be executed, and PHP will try to

matching "catch" block. If an exception is not caught then the fatal error will be issued with

an "Uncaught Exception" message.

Consider an example that try to throw an exception without catching it:

Sample Code 4.7.c

<?php

function checkNumber($num){

if($num>1)

throw new Exception("number must be less than or equal to 1");

return true;

}

checkNumber(2);

?>

Output :

Fatal error: Uncaught Exception: number must be less than or equal to 1 in

/opt/lampp/htdocs/er.php:5 Stack trace: #0 /opt/lampp/htdocs/er.php(10):

checkNumber(2) #1 {main} thrown in /opt/lampp/htdocs/er.php on line 5

Exception handling program works in below mentioned flow

Step 1 : Program code is checked whether the exception occurred or not

Step 2 :

2.A : If exception occurred then check exception handled or not

 2.A.a : If exception is handled Finally block is executed

 2.A.b : If exception is not handled then also Finally block is executed

2.B:If exception not occurred

2.B.a: If exception not occurred then Finally block is executed.

Self Test (Multiple Choice Questions):

1. What will be the output of following code

<?php

function Test($value) {

 try {

 if($value == 9) {

 throw new Exception('Number is 9 </br>');

 }

 }

 catch(Exception $e) {

 echo "</br>Exception Caught properly ", $e->getMessage();

 }

 finally {

 echo "This block clean all the activity ";

 }

 }

Test(9);

?>

Options :

a.This block clean all the activity

Exception Caught properly Number is 9

This block clean all the activity

b.Exception Caught properly Number is 9

This block clean all the activity

c.Number is 9

d.This block clean all the activity

2. What will be the output of following code

<?php

function Test($value) {

 try {

 if($value == 9) {

 throw new Exception('Number is 9 </br>');

 }

 }

 catch(Exception $e) {

 echo "</br>Exception Caught properly ";

 }

}

Test(99);

Test(9);

?>

Options :

a.Exception Caught properly Number is 9

This block clean all the activity

b.Exception Caught properly

c.Exception Caught properly Number is 9

d.None of above

3.______ It is a block of code where we can write code for which exception can occur

Options

a.try

b.catch

c.finally

d. None of above

4. _____ block is use after the catch block

a.try

b.catch

c.finally

d. None of above

5. _____ block is use to throw exception

a.try

b.catch

c.finally

d. None of above

4.8 Summary

With the help of this unit students can understand types of errors and exceptions and also

students understand that how to handle Errors as well as Exception occurred at the time of

execution of source code.

4.9 Exercise:

1. Why Exception Handling in PHP?

2. State and explain various PHP specialized keywords.

3. What are the main error types in PHP and how do they differ?

4. How can you enable error reporting in PHP?

5. How does one prevent the following Warning ‗Warning: Cannot modify header

information – headers already sent‘ and why does it occur in the first place?

6. List and Describe PHP error constants.

7. What will be the output/error of following code?

<?php

$x = "xyz";

y = "pqr";

echo $x;

echo $y;

?>

8. Explain Basic Error Handling die() function. What will be the output of following

code?

<?php

if(!file_exists("welcome.txt"))

{

die("File not found");

}

Else

{

$file=fopen("welcome.txt","r");

}

?>

9. State & explain various rules for exceptions.

10. How to create Custom Error Handler? Explain error_function() with parameters in

detail.

Unit 5

PHP MySQLi

5.1 Learning Objectives

After successful completion of this unit, Students will be able to perform database

connectivity with PHP.

5.2 Introduction

This chapter focuses on MySQLi or MySQL extension with PHP. To access MySQL

database servers MySQLi functions are used.we can use MySQLi extension with MySQL

version 4.1.13 or newer.

5.3 MySQLi connect

We can use both object-oriented and procedural interface for accessing mysql database using

MySQLi.

Using Procedural approach :

Sample Code 5.3.a

<?php

$cn = mysqli_connect("localhost","",""); // Establish connection

if (!$cn) { // Connection Checking

 die("Connection is not done properly: " . mysqli_connect_error());

}

echo "Connection established successfully";

?>

Output :

Connection established successfully

Explanation :

In above mentioned sample code 5.3.a is having procedural approach to establish connection

with mysql and mysqli_connect function is used to establish connection with mysql

 mysqli_connect() is having five parameters mentioned below

 host : Name of host

 username : Username to access the database

 password : Password provided to the database,

 dbname : Name of Database

 port : Port Number

 socket : Socket

mysqli_connect(host, username, password, dbname, port, socket)

In sample code 5.3.a only three parameters mentioned(host, username, password) in

mysqli_connect whereas port and socket are optional parameter

In sample code 5.3.a

$cn = mysqli_connect("localhost","",""); // Establish connection

$cn is used to stored the connection string from mysqli_connect

Name of host : localhost

If username and password are not set then we can mentioned as empty ("") as shown in

sample code 5.3.a

Using object-oriented approach :

Sample Code 5.3.b :

<?php

$cn = new mysqli("localhost", "", "");

if (!$cn) { // Connection Checking

 die(" Connection is not done properly : " . mysqli_connect_error());

}

echo "Connection established successfully";

?>

Explanation :

In Sample Code 5.3.b instance of mysqli class is created using new. Once instance created

successfully then we can say that the connection is successful.

All required details are provided with mysqli class to create connection like Name of host -

localhost. If username and password are not set then we can mentioned as empty ("").

Self Test (Multiple Choice Questions) :

1)Which of the following is a optional parameter:

Options:

a.host

b.dbname

c.username

d.socket

2)Which of the following is not a parameter of mysqli_connect():

Options:

a.host

b.username

c.port

d.query

3)To work with mysqli which class is instantiated via its constructor:

Options:

a.mysql

b.msqli

c.sql

d.sqli

4)Which of the following is correct syntax when the username and password is not set?

Options:

a.$cn = new mysqli("localhost", "", "");

b.$cn = new mysqli("localhost", "NA", "NA");

c.$cn = new mysqli("localhost", "_", "_");

d.$cn = new mysqli("localhost", " ", " ");

5.4 Loop through MySQLi results

The MYSQLi extension can also manage result sets object using the fetch_array() ,

fetch_row(), fetch_object() and fetch_array() methods, respectively. Their prototypes follow:

It is very easy to get data from database using mysqli function inside loop like while

statement. If in case loop gets fails to fetch the next row, it returns false, and loop get ends.

Sample Code 5.4.a :

<?php

$cn = mysqli_connect("localhost","root","","mysql"); // Establish connection

if (!$cn) { // Connection Checking

 die("Connection is not done properly: " . mysqli_connect_error());

}

$res=mysqli_query($cn,"SELECT * FROM stud");

echo "<table border='1'>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Address</th>

<th>Mobile number</th>

</tr>";

while($row = mysqli_fetch_array($res))

{

 echo "<tr>";

 echo "<td>" . $row['fname'] . "</td>";

 echo "<td>" . $row['lname'] . "</td>";

 echo "<td>" . $row['addd'] . "</td>";

 echo "<td>" . $row['mnumber'] . "</td>";

 echo "</tr>";

}

echo "</table>";

mysqli_close($cn); //close the connection

?>

Output :

Firstname Lastname Address Mobile number

Prashant Patil Nashik 0

Vivek Patil Nashik 0

Ritesh Suryawanshi Pune 0

Explanation :

In Sample Code 5.4.a mysqli_query() function is having two parameters,first is connection

string stored in $cn and second is query which will executes on $cn. And the result of

mysqli_query() is stored in $res.

Here in Sample Code 5.4.a we have used mysqli_fetch_array() function inside while loop to

retrieve the data in rows from database.

Self Test (Multiple Choice Questions) :

1)Which of the following is not a method of the Mysqli extrnsion?

Options:

a.fetch_array()

b.fetch_row()

c.fetch_object()

d.fetch_data()

2)Is it possible to loop through Mysqli results?

Options:

a.Yes

b.No

c.Cannot say

3)which of the following statement is used to loop through Mysqli results?

Options:

a.if

b.while

c.switch

d.None of the above

4.Which of the following method is used inside while loop to retrieve the data in rows from

the database?

Options:

a.mysqli_query()

b.fetch_data()

c.mysqli_fetch_array()

d.mysqli_debug()

5.5 Prepared statements in MySQLi

Mysqli provides is one of the best feature named prepare statement, with the use of prepare

statement we can execute similar SQL statements repeatedly.

Prepare statements are highly efficient as the parsing time of prepare statement is very less

since the preparation for the query is done once and we can executes statements multiple

times.

Sample Code 5.5.a

<?php

$cn = mysqli_connect("localhost","root","","mysql"); // Establish connection

if (!$cn) { // Connection Checking

 die("Connection is not done properly: " . mysqli_connect_error());

}

$st = $cn->prepare("INSERT INTO stud(fname,lname,addd,mnumber) VALUES (?, ?,

?,?)");

$st->bind_param("sssi",$fname,$lname,$addd,$mnumber);

$fname = "Pushkaraj";

$lname = "Kasture";

$addd = "Pushkaraj@example.com";

$mnumber=000000000;

$st->execute();

$fname = "Rahul";

$lname = "Patil";

$addd = "Rahul@example.com";

$mnumber=000000000;

$st->execute();

$fname = "Atul";

$lname = "Chaudhari";

$addd = "Atul@example.com";

$mnumber=000000000;

$st->execute();

echo "Records generated successfully";

$st->close();

$cn->close();

?>

Output :

Records generated successfully

Explanation :

In above code 5.5.a bind_param() function is responsible to binds the parameters with the

SQL query and at the same time it specifies argument types. Types of argument can be one

of following types

s indicates string

d indicates double

i indicates integer

b indicates BLOB

Self Test (Multiple Choice Questions) :

1)With the use of _____ statement can the user execute similar SQL statements repeatedly

Option :

a.prepare

b.view

c.stored procedure

d.template

2)Which if the following are a type of argument of bind_param()

i. s indicates string

ii. c indicates char

iii. i indicates integer

iv. b indicates BLOB

Option :

a.i, ii, iii

b.i, iii, iv

c.i, ii, iv

d.i, iii

3)Prepare statement is not supported in Mysqli?

Option :

a.Yes

b.No

4)Which of the following does not support the SQL queries with *?

Option :

a.bind_result()

b.get_result()

c.store_result()

d.None Of the Above

5.6 Escaping Strings :

To escapes special characters from string to use in an SQL query mysqli_real_escape_string()

function is used

Syntax of mysqli_real_escape_string() function :

mysqli_real_escape_string(connection, escapestring)

Sample Code 5.6.a :

<html>

<head>

<title>Form Input Data</title>

</head>

<body>

<table border="1">

 <tr>

 <td align="center">Form Input Student Data</td>

 </tr>

 <tr>

 <td>

 <table>

 <form method="post" action="">

 <tr>

 <td>First Name</td>

 <td><input type="text" name="fname" size="20">

 </td>

 </tr>

 <tr>

 <td>Last Name</td>

 <td><input type="text" name="lname" size="40">

 </td>

 </tr>

 <tr>

 <td>Address</td>

 <td><input type="text" name="addd" size="40">

 </td>

 </tr>

 <tr>

 <td>Mobile Number</td>

 <td><input type="text" name="mnumber" size="40">

 </td>

 </tr>

 <tr>

 <td></td>

 <td align="right"><input type="submit" name="submit" value="Sent"></td>

 </tr>

 </table>

 </td>

 </tr>

</table>

</body>

</html>

<?php

$cn =mysqli_connect("localhost","root","","mysql"); // Establish connection

if (!$cn) // Connection Checking

{

 die("Connection failed: " . mysqli_connect_error());

}

// Escape special characters, if any

$fname = mysqli_real_escape_string($cn,$_POST['fname']);

$lname = mysqli_real_escape_string($cn,$_POST['lname']);

$addd = mysqli_real_escape_string($cn,$_POST['addd']);

$mnumber = mysqli_real_escape_string($cn,$_POST['mnumber']);

$sql="INSERT INTO stud(fname,lname,addd,mnumber) VALUES

('$fname','$lname','$addd',$mnumber)";

mysqli_query($cn, $sql);

mysqli_close($cn); //close the connection

?>

Output :

Explanation :

In above Sample Code 5.6.a we have escaped the special characters from the inputs taken

from HTML file .

Escapes special characters and Data get inserted.

Self Test (Multiple Choice Questions) :

1)Which of the following is correct Syntax of escaping strings in mysqli?

Option :

a.mysqli_real_escape_string(conn, escapestrings)

b.mysqli_real_escape_string(conn, escapestrings())

c.mysqli_real_escape_string(conn, escapestrings{})

d.mysqli_real_escape_string(conn, escapestrings[])

2)While escaping strings Data is also escaped with the special characters

Option :

a.Yes

b.No

5.7 Debugging SQL in MySQLi :

Debugging operations is performed with the help of mysqli_debug() function.

mysqli_debug() function requires parameter as a string representation to perform debugging

operation.

5.8 MySQLi query :

MySQL Create Table :

Consider the example of Sample Code 5.8.a where we are creating the table into the database

with name staff using php

Sample Code 5.8.a:

<?php

$cn = new mysqli("localhost", "root", "","mysql");

if (!$cn) { // Connection Checking

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "create table staff(id INT,name VARCHAR(20))";

if(mysqli_query($cn,$sql)) {

 echo "Table staff created successfully";

}

else{

echo "Could not create table: ". mysqli_error($cn);

}

 mysqli_close($cn); //close the connection

?>

Output:

Table staff created successfully.

Explanation :

In Sample code 5.8.a we have created table in Mysql using create table query of mysql and

executed on connection using mysqli_query() function.

MySQL Insert Record :

Consider Staff table is available with the database and we have to insert values of id and

name into the table through php.

Consider following example of Sample Code 5.8.b

Sample Code 5.8.b

<?php

$cn = new mysqli("localhost", "root", "","mysql");

if (!$cn) { // Connection Checking

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "INSERT INTO staff(id,name) VALUES (5,'Bhushan')";

if(mysqli_query($cn, $sql)){

 echo "Record successfully inserted into staff table";

}

else{

echo "Could not insert record: ". mysqli_error($cn);

}

 mysqli_close($cn); //close the connection

?>

Output :

Record successfully inserted into staff table

Explanation :

In Sample code 5.8.b we have inserted record in staff table in Mysql using insert query of

mysql and executed on connection using mysqli_query() function.

If we want to enter the data into the database from web page for that reason we have to

perform the following steps :

1. Design web page in HTML

2. Pass the values from HTML to PHP code using post method

3. Insert the values into the database through insert query

Below mentioned is the sample code 5.8.c

Sample code 5.8.c

<html>

<head>

<title>Form Input Data</title>

</head>

<body>

<table border="1">

 <tr>

 <td align="center">Form Input Student Data</td>

 </tr>

 <tr>

 <td>

 <table>

 <form method="post" action="">

 <tr>

 <td>First Name</td>

 <td><input type="text" name="fname" size="20">

 </td>

 </tr>

 <tr>

 <td>Last Name</td>

 <td><input type="text" name="lname" size="40">

 </td>

 </tr>

 <tr>

 <td>Address</td>

 <td><input type="text" name="addd" size="40">

 </td>

 </tr>

 <tr>

 <td>Mobile Number</td>

 <td><input type="text" name="mnumber" size="40">

 </td>

 </tr>

 <tr>

 <td></td>

 <td align="right"><input type="submit" name="submit" value="Sent"></td>

 </tr>

 </table>

 </td>

 </tr>

</table>

</body>

</html>

<?php

$cn =mysqli_connect("localhost","root","","mysql"); // Establish connection

if (!$cn) // Connection Checking

{

 die("Connection failed: " . mysqli_connect_error());

}

// Escape special characters, if any

$fname = $_POST['fname'];

$lname =$_POST['lname'];

$addd = $_POST['addd'];

$mnumber = $_POST['mnumber'];

$sql="INSERT INTO stud(fname,lname,addd,mnumber) VALUES

('$fname','$lname','$addd',$mnumber)";

mysqli_query($cn, $sql);

mysqli_close($cn); //close the connection

?>

MySQL Update Record :

Consider example mentioned in Sample Code 5.8.d where updation of record is done through

update query

Sample Code 5.8.d

<?php

$cn = new mysqli("localhost", "root", "","mysql");

if (!$cn) { // Connection Checking

 die("Connection failed: " . mysqli_connect_error());

}

$sql="update staff set name='Kuldeep' where id=5";

if(mysqli_query($cn,$sql)) {

 echo "Name updated successfully";

}

else{

 echo "Could not update record: ". mysqli_error($cn);

}

mysqli_close($cn); //close the connection

?>

Output :

Name updated successfully

Explanation :

In Sam ple code 5.8.d we have updated record in staff table in Mysql using update query of

mysql and executed on connection using mysqli_query() function.

MySQL Delete Record :

Consider example of Sample Code 5.6.d where we are deleting the values from the database

using php code.

Sample Code 5.8.e

<?php

$cn = new mysqli("localhost", "root", "","mysql");

if (!$cn) { // Connection Checking

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "delete from staff where id=5";

if(mysqli_query($cn, $sql)) {

 echo "Row deleted successfully";

}

else {

 echo "Could not deleted record: ". mysqli_error($cn);

}

mysqli_close($cn);

?>

Output :

Row deleted successfully

Explanation :

In Sample code 5.8.e we have deleted record in staff table in Mysql using update delete of

mysql and executed on connection using mysqli_query() function.

MySQLi Select Query Example :

Please refer code 5.4.a for Select Query Example

we have selected record from table in Mysql using select query of mysql and then fetched

rows using function mysqli_fetch_array() function inside while loop to retrieve the data in

rows from database.

5.9 How to get data from a prepared statement :

For Explanation refer section 5.5.a

5.10 MySQLi Insert ID :

mysqli_insert_id() function used for MySQLi Insert ID which returns the id

Sample Code 5.10.a :

<?php

$cn = mysqli_connect("localhost","root","","mysql"); // Establish connection

if (!$cn) { // Connection Checking

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "INSERT INTO employee(name,addd) VALUES ('Tushar','Pune')";

mysqli_query($cn, $sql);

echo "New record has id: " . mysqli_insert_id($cn);

mysqli_close($cn);

?>

Output :

New record has id: 0

5.11 Close connection

mysqli_close() function use to close previously opened database connection refer code 5.10.a

where connection established with connection string $cn is close.

5.12 Joins :

SQL JOIN :

JOIN is used to combine records from two or more tables.

Following are the different types of Joins :

1. Inner Join : Returns the records matching in both tables

2. Left Join : Returns all records from left table matched records from right table.

3. Right Join : Returns all records from Right table matched records from left table.

4. Full Join : Returns all records from both left table and right table matched records from

both the tables.

5.13 Summary

With the help of this unit students can perform php and mysql connectivity, understand and

working meanig of funcitons required for database connectivity

5.14 Exercise :

1. How can we connect to a MySQL database from a PHP script?

2. Explain How is it possible to know the number of rows returned in the result set?

3. How can we create a database using PHP and MySQL?

4. Explain the use of mysqli_debug() function.

5. Explain the benefits of Prepared statements in MySQLi

6. Explain the syntactical difference between procedural and object-oriented approach while

defining Mysqli functions.

7. Explain the use of mysqli_real_escape_string function with example.

8. Explain the use of mysqli_fetch_array with sample code.

9.mysqli_debug() function requires a parameter as a _____ representation to perform

debugging operation

Options :

a.string

b.float

c.int

d.double

10.Which of the following works with all SQL statements?

Options :

a.with bind_result, and then fetch on the statement object

b.with get_result, and then fetch_assoc (or other fetch_* variant) on the result object

c.Both

d.None of the Above

11.What does mysqli_insert_id() return?

Options :

a.auto generated ID in the latest query

b.string value of the query

c.first ID of the column

d.average of the ID's

12. mysqli_insert_id() return string when _____.

Options :

a.number is greater than int value

b.number is equal to the int value

c.number is less than the int value

d.number is negative

13. JOIN is used to combine records of 2 or more tables?

Options :

a.True

b.False

14.Which of the following is not a type of JOIN?

Options :

a.Inner Join

b.Left Join

c.Partial Join

d.Full Join

Unit 6

Object Oriented Programming

6.1 Learning Objectives

After successful completion of this unit, you will be able to developed object oriented

functionality in PHP.

6.2 Introduction

In this chapter, we will study the various object oriented concepts such as Class,

Object, Member Function, Constructor, Destructor, Inheritance, Function Overloading,

Access Specifier, etc. used in PHP programming.

If we compare object oriented programming with procedural oriented programming,

object oriented programming is much faster. And also with the help of object oriented

programming we can reuse the code it will help use avoid repetition of code.

Class and Object are two major part of object oriented programming. Class consist of

member variable,member function whereas object is an instance of class.

6.3 Defining PHP Classes

Class is defined using class keyword followed by the classname followed by curly braces.

Below mentioned is the syntax of class

<?php

class Student {

}

?>

6.4 Creating Objects in PHP

new keyword is required to create Object of a class as shown in Sample Code 6.4.a.

One class may have multiple objects as shown in Sample Code 6.4.b. If we create multiple

objects of a class then every object is having all the properties as well as methods define

inside the class with different property values.

Sample Code 6.4.a

<?php

class Student {

 public $name;

 function Input($name) {

 $this->name = $name;

 }

 function Display() {

 return $this->name;

 }

}

$obj=new Student;

echo $obj->Input("Vivek");

echo $obj->Display();

?>

Output:

Vivek

Explanation :

Object $obj is created by using new keyword where Student is name of class. We are passing

the string as a parameter to Input method of class by calling Input method through object $obj

and displaying the value of string using the same object.

Sample Code 6.4.b

<?php

class Student{

 public $name;

 function Input($name) {

 $this->name = $name;

 }

 function Display() {

 return $this->name;

 }

}

$obj=new Student;

echo $obj->Input("Vivek");

echo $obj→Display();

$obj2=new Student;

echo $obj2->Input("Patil");

echo $obj2->Display();

?>

Output :

VivekPatil

Explanation :

Object $obj and $obj2 are created of same class Student using new keyword.

We are passing the string ―Vivek ‖as a parameter to Input method of class by calling Input

method through object $obj and displaying the value of string using $obj.

Similarly,We are passing the string ―Patil ‖as a parameter to Input method of class by calling

Input method through object $obj2 and displaying the value of string using $obj2.

Creating Multiple Classes and Multiple Objects:

Below is the sample code of 6.4.c contains multiple classes and multiple objects

Sample Code 6.4.c

<?php

class Student{

 public $name;

 function Input($name) {

 $this->name = $name;

 }

 function Display() {

 return $this->name;

 }

}

class Staff{

 public $name;

 function Input($name) {

 $this->name = $name;

 }

 function Display() {

 return $this->name;

 }

}

$stud_obj=new Student;

echo $stud_obj->Input("Sagar");

echo $stud_obj->Display();

$stud_obj2=new Student;

echo $stud_obj2->Input("Bhosale </br>");

echo $stud_obj2->Display();

$staff_obj=new Student;

echo $staff_obj->Input("Mohan");

echo $staff_obj->Display();

$staff_obj2=new Student;

echo $staff_obj2->Input("Nikam");

echo $staff_obj2->Display();

?>

Output :

SagarBhosale

MohanNikam

Self Test (Multiple Choice Questions)

1. Which Keyword is used to create Object of class in PHP?

Options :

 a. New

 b. Public

 c. Object

 d. None of above

2. How many objects can be created for a class?

Options :

 a. 2

 b. 1

 c. Multiple

 d. Maximum 4

3. Correct Syntax to create a objectis -

Options :

 a. $variable=class_name();

 b. $variable=new class_name();

 c. $variable=new class class_name();

 d. new.$variable=class_name();

4. Object is an _____ of a class.

Options :

 a. Instance

 b. Prototype

 c. a and b

d. Function

5. What will be the output of the code

<?php

class Student {

 public $name;

 function Input() {

 $this->name = "php";

 }

 function Display() {

 return $this->name;

 }

}

$obj=new Student;

echo $obj->Input();

echo $obj->Display();

?>

Options:

a.php

b.name

c.$this→name

d.None of above

6.5 Calling Member Functions

With the help of object of a class we can call member function of that particular class.

We Can also call the same member functions with different properties by creating multiple

objects of the class.

Consider example of Sample Code 6.4.b,In Sample Code 6.4.b Input and Display

methods called by object name $obj and similarly same methods are called using $obj2.

Self Test (Multiple Choice Questions)

1. What will be the Output of following?

 <?php

 class hello{

 function world() {

 echo‖Hello world‖;

 }

 }

 $a=new hello();

 $a->world();

 ?>

Options :

 a. Error

 b. True

 c. No output

 d. Hello World

2. We can call member function using Object of particular class with different properties.

Options :

 a. True

 b. False

3. Member function can access member‘s of____

Options:

 a. Current object

 b. All objects

 c. Both a and b

 d. None of these

6.6 Constructor Functions

Like other object oriented programming language Constructor in PHP is also used to

initialize properties of an object and also like other object oriented programming language

Constructor Functions are automatically called at the time of constructing an object.

In PHP also constructor is a special function. _construct() defines the constructor.

Sample Code 6.6.a

<?php

class Student {

 public $name;

 function __construct() { // Define Constructor

 $this->name="Vivek"; //name get initialize in constructor

 }

 function Display() {

 return $this->name;

 }

}

$obj = new Student; // Constructor called

echo $obj->Display();

?>

Output :

Vivek

Explanation :

In Sample Code 6.6.a constructor is called automatically when object $obj is created and

name get initialize in constructor.

Sample Code 6.6.b

<?php

class Student {

 public $name;

 function __construct($name) { // Define Constructor

 $this->name=$name; //name get initialize in constructor

 }

 function Display() {

 return $this->name;

 }

}

 // Constructor called

$obj= new Student("Sagar");

echo $obj->Display();

?>

Output :

Sagar

Self Test (Multiple Choice Questions)

1. Constructor Functions are automatically called at the time of

Options:

 a. Calling of method

 b. constructing an object.

 c. Defining class

 d. Defining method

2. In php which function used to define constructor?

Options:

 a. Construcor()

 b. __construct()

 c. __ constructor()

 d. Construct()

3. Constructor also called as _____ in PHP

Options:

 a. Magic functions

 b. Static member of class

 c. Object of class

 d. All of above

4. Constructor have

Options:

 a. parameters

 b. No parameters

 c. Only one arguments

 d. a or b

6.7 Destructor

__destruct() function is used to define destructor in PHP.This function automatically

called when the script stopped. Syntax of destructor is having two underscores before

destruct word.

Sample Code 6.7.a

<?php

 class Student {

 public $name;

 function __construct() { // Define Constructor

 $this->name="Vivek"; //name get innitialize in constructor

 }

 function __destruct() {//Define Destructor

 echo $this->name; // Print the value of name inside Destructor

 }

}

$obj = new Student; // Constructor called

?>

Output :

Vivek

Explanation :

__destruct() get called at the end of the script.

 Self Test (Multiple Choice Questions)

1. Destructor is called_____

Options :

 a. When destructor defined

 b. When object is destructed or the script is stopped.

 c. Not called if not defined

 d. When constructor passess control to destructor

2. In php which function used to define destructor?

Options :

 a. destrucor()

 b. __destruct()

 c. __ destructor()

 d. destruct()

3.The destructor method cannot accept any argument.

Options :

 a. False

 b. True

6.8 Inheritance

Like other object oriented programming languages feature of Inheritance is available in PHP,

here one class is derived from the other class. The class which inherits the properties of

another class called as child class and the class which gets inherited is called parent class.

Extends keyword is used to defined inherited class.

Sample Code 6.8.a

<?php

class C_Parent{

 public function Display() {

 echo "Inside Parent Class </br>";

 }

}

class C_Child extends C_Parent { // Child class inherits the properties of Parent class

public function Show() {

 echo "Inside Child Class";

 }

}

$C_Child= new C_Child;

$C_Child->Display();

$C_Child->Show();

?>

Output :

Inside Parent Class

Inside Child Class

Explanation :

In the above mentioned Sample Code 6.8.a C_Child is a child class which inherits the

properties of C_Parent which is parent class using keyword extends and due to this object of

child class can access public member of parent class.

Consider Example of Sample Code 6.8.b where class three inherits the method of class two

and class two inherits the method of class one

Sample Code 6.8.b

<?php

class one{

 public function Display() {

 echo "Inside one </br>";

 }

}

class two extends one { // Child class inherits the properties of Parent class

public function Show() {

 echo "Inside two </br>";

 }

}

class three extends two { // Child class inherits the properties of Parent class

public function out() {

 echo "Inside three";

 }

}

$obj= new three;

$obj->Display();

$obj->Show();

$obj->out();

?>

Output :

Inside one

Inside two

Inside three

Self Test (Multiple Choice Questions)

1. An inherited class is defined by using the _____ keyword.

Options:

 a. Extends

 b. Implements

 c. __extends

 d. ____implements

2. which properties of parent class access by child class?

Options :

 a. Private & public

 b. Private & protected

 c. Public & protected

 d. Only Public

6.9 Function Overriding

Like other object oriented programming languages in PHP also both child and parent

classes have same function name as well as same number of parameters. With the help of

function overriding we can change the behavior of parent class method.

Sample Code 6.9.a

<?php

class C_Parent{

 public function Display() {

 echo "Inside Parent Class </br>";

 }

}

class C_Child extends C_Parent { // Child class inherits the properties of Parent class

 public function Display() {

 echo "Inside Child Class";

 }

}

$C_Parent=new C_Parent;

$C_Child= new C_Child;

$C_Parent->Display();

$C_Child->Display();

?>

Output :

Inside Parent Class

Inside Child Class

Explanation :

In above mentioned code of 6.f both child and parent class is having same method with name

Display() having same number of parameter (zero parameter). And to execute the Display()

method of both the classes we need to create different objects for both child and parent

classes.

6.10 Access Specifiers

Like other object oriented programming languages PHP is also having access specifiers for

controlling the access of member functions and properties of a class.

Following are the different access specifiers in PHP

 public

 private

 protected

public :

 If we make methods or properties of a class as public then we can access these methods or

properties anywhere inside the code.

public is default access specifier in PHP

Consider an example as mentioned in below code public access specifier is applied to name

property

Sample Code 6.10.a

<?php

 class Student {

 public $name;

 }

 $obj = new Student;

 $obj->name = 'Vivek';

?>

Explanation :

In above code public access specifier is given to name so it can accessible in complete

code,so code will not give error.

Consider an example as mentioned in below code protected and private access specifiers are

applied to year and division properties respectively.

Sample Code 6.10.b

<?php

class Student {

 public $name;

 protected $year;

 private $division;

}

 $obj = new Student;

 $obj->name = 'Vivek';

 $obj->year = '2019'; // ERROR

 $obj->division = 'C'; // ERROR

?>

Output :

Fatal error: Uncaught Error: Cannot access protected property Student::$year in

/opt/lampp/htdocs/er.php:12 Stack trace: #0 {main} thrown in /opt/lampp/htdocs/er.php on

line 12

Explanation :

Error generated in output for year and division properties as both the properties are having

protected and private classifier respectively.

Consider an example as mentioned in below code public access specifier is applied to

Display_name() method

Sample Code 6.10.c

<?php

class Student {

 public $name;

 public $year;

 public $division;

 function Display_name() { // bydefault it is public function

 echo $this->name="Vivek";

 }

}

$obj = new Student;

$obj->Display_name(); // OK

?>

Explanation :

In above code public access specifier is given to Display_name() method so it can accessible

in complete code,so code will not give error.

Consider an example as mentioned in below code protected and private access specifiers are

applied to Display_year() and Display_division() respectively.

Sample Code 6.10.d

<?php

class Student {

 public $name;

 public $year;

 public $division;

 function Display_name() { // bydefault it is public function

 echo $this->name="Vivek";

 }

 protected function Display_year() { // a protected function

 echo $this->year=2019;

 }

 private function Display_division() { // a private function

 echo $this->division="C";

 }

}

$obj = new Student;

$obj->Display_name(); // OK

$obj->Display_year(); // ERROR

$obj->Display_division(); // ERROR

?>

Output :

Vivek

Fatal error: Uncaught Error: Call to protected method Student::Display_year() from context

'' in /opt/lampp/htdocs/er.php:22 Stack trace: #0 {main} thrown in /opt/lampp/htdocs/er.php

on line 22

Explanation :

Error generated in output for Display_year() and Display_division() methods as both the

methods are having protected and private classifier respectively.

6.11 Interfaces

We can say that interface is higher level of abstraction. Syntax of interface is almost

same as of class only one difference is that instead of class keyword interface keyword is

used to define interface. Interface contains just the function prototypes no any data variables.

 While defining interface following are need to be considered :

 All the methods in the interface need to make public.

 All the methods in the interface have no implementation.

 One class can implements one or more interface

Sample Code 6.11.a

 <?php

interface Year { // Declaring interface

 public function FY();

 public function SY();

}

class Student implements Year{

 public function FY() {

 // Implementation of FY

 }

 public function SY(){

 // Implementation of SY

 }

}

?>

Explanation :

Interface is declared with name Year and Student is class which implements the interface

Year.

6.12 Abstract Classes

 In PHP abstract class is declared using abstract keyword. It contains at one abstract method.

Abstract class contains both abstract and non abstract methods.

Sample Code 6.l2.a

<?php

abstract class ab_base // Abstract class

{

 abstract function Display(); //Abstract function

 function Show() //Non Abstract function

 {

 echo "This is non abstract function in abstract class ";

 }

}

?>

Sample Code 6.12.b

<?php

abstract class ab_base // Abstract class

{

 abstract function Display(); //Abstract function

}

class ab_Derived extends ab_base { // class extends abstract class

 function Display() {

 echo "In Derived class";

 }

}

$obj = new ab_Derived;

$obj->Display();

?>

Output:

In Derived class

Explanation :

In above code abstract Display function is as abstract function which is implemented in

ab_Derived class. In PHP we can not create object of an abstract class.

6.13 Static and Final Keywords

Static Keyword:

Static keyword is used to declare static methods.

Sample Code 6.13.a

 <?php

class Student {

 public static function Display() {

 echo "Inside Static Function";

 }

}

Student::Display();

?>

Output:

Inside Static Function

Explanation :

Static Function Display is called by class name and double colon (::).

Final Keyword :

We can use Final keyword for both the classes and methods In PHP .

Final keyword to method:

If we declare any method with the final keyword then this particular method can not be

override.

Sample Code 6.13.b

<?php

class C_Parent {

 final function Display() {

 echo " Base class final Display function </br>";

 }

 function Show() {

 echo "This is not final Show function in base class </br>";

 }

}

 class C_child extends C_Parent {

 function Show() {

 echo "This is non final Show function in Derived class";

 }

}

$obj = new C_child;

$obj->Display();

$obj->Show();

?>

Output :

Base class final Display function

This is non final Show function in Derived class

Final keyword to Class:

If we declare class as final then it can not be extend

Sample Code 6.13.c

<?php

 final class C_Parent { // Class declared with final keyword

 final function Display() {

 echo " Base class final Display function </br>";

 }

 function Show() {

 echo "This is not final Show function in base class </br>";

 }

}

 class C_child extends C_Parent {

 function Show() {

 echo "This is non final Show function in Derived class";

 }

}

$obj = new C_child;

$obj->Display();

$obj->Show();

?>

Output:

Fatal error: Class C_child may not inherit from final class (C_Parent) in

/opt/lampp/htdocs/er.php on line 23

6.14 Calling Parent Constructors

Constructor of parent is not called implicitly in the child class constructor. If we want

to access parent class constructor in child class then we need to call parent::__construct().

Sample Code 6.14.a

<?php

class C_Parent {

 function __construct() {

 print "In Parent Class constructor </br>";

 }

}

class C_Child extends C_Parent {

 function __construct() {

 parent::__construct();

 print "In Child Class constructor";

 }

}

$Pobj = new C_Parent;

$Cobj = new C_Child;

?>

Output :

In Parent Class constructor

In Parent Class constructor

In Child Class constructor

6.15 Namespaces

If we want to use same name repeatedly in same program creating Namespace is the best

solution for that. We can redeclare the same methods or classes in the separate namespace

within a single program without getting any error.

Syntax for declaring namespace is as follows

<?php

namespace NamspaceName {

// We can declare Classes or Functions or interfaces

 }

?>

6.16 Functions

Creating Function :

function keyword is required to declare function in PHP

Below mentioned is the syntax of function

function nameoffunction(){

 // code that need to execute inside the function

}

Sample Code 6.16.a

<?php

function sample()

{

 echo "This is sample function";

}

sample(); // Calling the function

?>

Output :

This is sample function

Function with Parameters :

Sample code 6.16.b

<?php

function sum($a,$b) // Parameters of Function

{

 $c = $a+$b;

 echo "Addition is $c";

}

sum(2,3);

?>

Output :

Addition is 5

Function with return Value :

Sample Code 6.16.c

<?php

function sum($a,$b)

{

 $c = $a+$b;

 return $c; // return value using return keyword

}

echo "Addition is ".sum(2,3);

?>

Output :

Addition is 5

6.17 Summary

With the help of these unit students can developed source code using object-oriented

approach in PHP

6.18Exercise:

 What is a class? How object is created in PHP?

 What are constructor and destructor in PHP?

 What is an Interface in PHP?

 What are the different data types in PHP?

 What is a final keyword in PHP and when it is used?

 Create ‗stud‘ class in PHP. Take the RollNo, Name & MobNo of student as an input

of 10 students and display it back.

 What is different types of Visibility? OR What are access modifiers?

 What is the difference between Abstract class and Interface?

 What are the advantages of object oriented programming?

 What is the relation between Classes and Objects?

 A class is defined by using the _____keyword.

Options:

 a. function

 b. new

 c. class

d. public function

7. PHP Frameworks and Laravel

A PHP Platform is a central framework allowing us to create web applications. To put

it another way, it provides structure. You'll end up saving loads of time by using a PHP

Framework, avoiding the need to create repetitive code, and you'll be able to build

applications easily (RAD). In this chapter, we will study the various PHP frameworks.

7.1 Introduction to Framework

 A PHP Framework is a set of files, grouped together to promote development. In the

standard MVC (Model-View-Controller) architecture model, the configuration of PHP

Frameworks makes more sense. We distinguish your business logic (Controllers) from your

front-end interface (Views) database calls (models). Model View Controller (MVC) is the

general idea behind the workings of a PHP framework. MVC is a programming architectural

pattern that isolates business logic from the UI, allowing one to be altered independently

from the other (also known as separation of concerns). Model refers to data with MVC, View

refers to the layer of presentation and Controller refers to the application or the business

logic. MVC effectively breaks up an application's development process, so you can focus on

individual elements while others are unaffected. In PHP, this essentially makes coding

simpler and less difficult. PHP Frameworks give your PHP projects security and efficiency.

We take things like SQL injections, XSS attacks, and more into account, and

present fundamental protections against those risks.

Why to use PHP Framework?

For various reasons, developers should use PHP frameworks but the number one

reason is to speed up the development process. Reusing code across similar projects will save

a significant amount of time and effort on the developer. A system provides pre-built

modules to perform repetitive coding tasks, so developers can spend their time with each and

every project designing the actual application rather than re-building the base.

One big reason developers are using frameworks is consistency. Although simplicity

is one of the greatest assets of PHP, and the reason that many people prefer to use this

language of scripting, it may also be one of its greatest downfalls. It's relatively easy to write

bad code and not even know it, particularly for beginners. The code will often always work

with PHP, however unknowingly you may have created in your coding a large security hole

that could be vulnerable to attacks. It is important to remember that PHP is a very forgiving

language, so making sure to tie up any loose ends in your coding is even more important –

even if the code appears to work properly.

Finally, there is extensive availability of PHP frameworks, and there are lots of

different frameworks to choose from. You can even build your own, though many developers

want to choose from any of the most common frameworks because of their popularity, large

support teams, and forums / communities that allow you to connect with other developers

using the same framework. As a side note, you should always look at your project to decide

first whether or not you should even use a system. There are some questions that you can ask

yourself: Will it save you, and anyone else who may use it, time and effort? Will the app

perform better? Will it improve stability? If you can answer yes to any of those questions, the

correct answer for that particular project may be a PHP framework.

List of the best PHP frameworks,

 Laravel

 c

 CodeIgniter

 Symfony

 CakePHP

 Yii

 Zend Framework

 Phalcon

 FuelPHP

 PHPixie

 Slim

7.1.1 Laravel

Laravel is a free, open-source PHP software platform, developed by Taylor Otwell

and designed to build web applications based on the architectural template model – view –

controller (MVC) and based on Symfony. Some of Laravel's features are a scalable

packaging framework with a dedicated dependency manager, multiple ways to access

relational databases, utilities that assist in deployment and maintenance of applications, and

its bias towards syntactic sugar. Laravel is an intuitive, elegant web application platform with

a syntax. We believe creation must be a fully rewarding, fun, artistic experience. Laravel tries

to remove the pain from creation by relieving common tasks used in most web projects, such

as authentication, routing, sessions and caching.

Laravel aims to make the development process friendly to the developer, without

losing the functionality of the application. Good developers come up with the best code. To

this end, we have tried to combine the very best of what we've seen in other software

architectures, including frameworks implemented in other languages like Ruby on Rails,

ASP.NET MVC, and Sinatra. Laravel is open but efficient, providing powerful tools that are

required for stable, wide applications. A superb container reversal, articulate migration

framework, and tightly integrated unit testing help give you the resources you need to

develop any application you are tasked with.

7.1.2 CodeIgniter

CodeIgniter is a web platform for rapid development of open-source software for use

with PHP in creating interactive websites. It is loosely based upon the development pattern of

the popular model – view – controller (MVC). While controller classes within CodeIgniter

are a necessary part of development, models and views are optional. CodeIgniter may also be

updated to use Hierarchical Model View Controller (HMVC) which allows developers to

maintain modular Controller, Model and View grouping organized in a subdirectory format.

As compared to other PHP frameworks, CodeIgniter is most often noted for its speed.

In an overall critical look at PHP frameworks, PHP developer RasmusLerdorf spoke at

frOSCon in August 2008, saying he liked CodeIgniter "since it is faster, lighter and the least

like a frame."

7.1.3 CakePHP

CakePHP is a Web application that is open source. It implements the model – view –

controller (MVC) method and is written in PHP, based on the Ruby on Rails framework, and

licensed under the MIT License. CakePHP uses well-known principles in software

engineering and trends in software design, such as configuration convention, model – view –

controller, active record, association data mapping and front control.

CakePHP began in April 2005, when Michal Tatarynowicz, a Polish programmer,

wrote a minimal version of a rapid application development framework in PHP, dubbing it

Cake. He released the code under the MIT license, and opened it up to developers ' online

community. As of December 2005, L. Masters G. J. Woodworth established the Cake

Software Foundation to promote CakePHP related development. As of May 2006, version 1.0

was released. One of the inspirations of the project was that of Ruby on Rails, using many of

their ideas. Many sub-projects have since developed and spawned in the community. In

October 2009, Woodworth project manager and developer N. Abele resigned from the project

to focus on their own projects, including the Lithium Web Project (formerly part of

CakePHP). The remaining development team decided to work on the aforementioned initial

roadmap.

7.1.4 Yii

Yii is an open source, object-oriented Web application framework for MVC PHP

component-based applications. Yii is pronounced as "Yee" or [ji:] and it means simple and

evolutionary" in Chinese and can be an acronym for "Yes It Is!". Yii started as an attempt to

fix perceived PRADO platform drawbacks: slow handling of complex websites, steep

learning curve, and difficulty in customizing many controls. Yii is a popular platform for

Web programming, meaning it can be used with PHP to build all sorts of Web applications.

Its component-based architecture and sophisticated caching support make it particularly

suitable for the development of large-scale applications such as portals, forums, content

management systems (CMS), e-commerce projects, RESTful Web services, and so on.

Yii features include:

 Model-View-Controller (MVC) design pattern.

 Generation of complex WSDL service specifications and webservice request handling

management.

 Internationalization and localization (I18N and L10N), including translation of texts,

formatting of date and time, formatting of numbers and finding interfaces.

 Layered caching scheme supporting data caching, page caching, caching of

fragments, and dynamic content. The data caching medium can be changed.

 Handling and logging errors You can categorize, filter, and route the log messages to

different destinations.

 Security measures include avoidance of cross-site scripting (XSS), cross-site request

forgery (CSRF) and interfering with cookies.

 Testing of unit and functions based on PHPUnit and Selenium.

 Automatic generation of code for skeleton application, CRUD apps, via the Gii tool.

 Code generated by Yii components and command line tools is XHTML compliant.

 Designed to function well with third party technology. For example, code from PEAR

or the Zend Framework may be included.

7.1.5 MVC (Model View controller)

7.1.5.1 Introduction

Model – View – Controller (usually known as MVC) is a pattern of software design

commonly used to develop user interfaces that divide the associated program logic into 3

interconnected elements. This is done to distinguish internal information representations from

the way information is presented to and approved by the user. Traditionally used for

graphical user interfaces (GUIs) on desktops, this pattern has become popular for web app

design. Popular programming languages such as JavaScript, Python, Ruby, PHP, Java, and C

have MVC frameworks which are used in developing web applications.

Model – It is the pattern's central component. It is the dynamic data structure of the program,

independent of user interface. It manages the application‘s data, logic, and rules directly.

View – It is any sort of information representation, such as a map, diagram, or table. Multiple

views of the same information, such as a management bar chart and a tabular view for

accountants are possible.

Controller – It takes data, and transforms it to model or display commands.

The model – view – controller architecture, in addition to dividing the application into those

components, determines the interactions between them.

 The model is responsible for handling application data. It receives controller user

input.

 The view implies the model is viewed in a particular format.

 The controller reacts to user input and performs interactions on objects of the data

model. The controller receives the data, validates it internally and then transfers the

input onto the computer.

7.1.5.2 Goals of MVC

Simultaneous Development

Because MVC decouples the different components of an application, developers can

work on different components in parallel, without affecting or blocking each other. For

example, a team could be dividing their developers between the front end and the back end.

Back-end developers can build the data structure and how the user interacts with it, without

having to complete the user interface. Conversely, the front-end developers will design and

check the application's interface before the data structure is available.

Code Reuse

It is possible to refact the same (or similar) view for one application with different

data for another application, because the view is simply handling how the data is displayed to

the user. Unfortunately this does not work when this code is also useful for user input

handling.

7.1.5.3 Advantages &Disadvantages

Advantages

 Simultaneous development – Multiple developers can work on the model, controller

and views at the same time.

 High cohesion – MVC allows for the logical grouping of similar actions together on a

controller. There are also groupings of views for a particular model.

 Loose coupling – The very nature of the MVC framework is such that models, views

or controllers are lowly coupling.

 Ease of modification – Future development or modification is simpler, because of the

separation of responsibilities.

 Multiple views for a model – Models can have many different views.

Disadvantages

The drawbacks of MVC for wrongly factored applications may usually be defined as

overhead.

 Code navigability – The navigation system can be challenging because it introduces

new levels of abstraction and requires users to conform to MVC's requirements for

decomposition.

 Multi-artifact consistency – The decomposition of a feature into three artefacts causes

dispersion. Thus, require developers to keep multiple representations consistent at

once.

 Undermined by inevitable clustering – Applications appear to communicate strongly

between what the user sees and what the user is using. Hence, the computation and

state of each function appears to be clustered into one of the 3 program parts erasing

MVC's purported advantages.

 Excessive boilerplate – Because the application computation and state are typically

clustered into one of the 3 parts, the other parts degenerate into either boilerplate

shims or code-behind which only exist to satisfy the MVC pattern.

 Pronounced learning curve – Multi-technology knowledge becomes norm. Developers

who use MVC need to be experienced in various technologies.

 Lack of incremental benefit – UI implementations are already factored into modules,

gaining code reuse and independence through the design of components, leaving

MVC no incremental gain.

7.2 Laravel Installation

7.2.1 Server Requirements

There are a few program specifications to the Laravel framework. The Laravel

Homestead virtual machine meets all of these criteria, so it is highly recommended that you

use Homestead as your local development environment in Laravel.

If you don't use Homestead, however, you will need to ensure that your server meets

the following requirements:

 PHP >= 7.1.3

 OpenSSL PHP Extension

 PDO PHP Extension

 Mbstring PHP Extension

 Tokenizer PHP Extension

 XML PHP Extension

 Ctype PHP Extension

 JSON PHP Extension

 BCMath PHP Extension

7.2.2 Installing Laravel

Laravel manages its dependencies using Composer. So, make sure you have

Composer installed on your machine, before using Laravel.

Using Laravel Installer

First, use Composer to download Laravel installer:

composer globalrequirelaravel/installer

Make sure you place the system-wide vendor bin directory for the composer in your $PATH

so that your system can locate the Laravel executable. Based on your operating system, this

directory exists at various locations; however, some common locations include:

 macOS: $HOME/.composer/vendor/bin

 GNU / Linux Distributions: $HOME/.config/composer/vendor/bin

https://laravel.com/docs/5.7/installation#installing-laravel

When mounted, the laravel new command will establish a fresh installation of Laravel in

the directory you choose. For example, laravel new web will create a web named directory

containing a fresh Laravel installation already installed with all of the Laravel dependencies:

laravel new web

Using Composer Create-Project

Alternatively, you can also install Laravel via the create-project Composer command in

your terminal:

composer create-project --prefer-distlaravel/laravel web "5.7.*"

Local Development Server

If you have PHP installed locally and want to use the built-in development server for your

application, you can also use the serve Artisan command. This command will open a server

for development at http://localhost:8000:

php artisan serve

Configuration

Public Directory

You should configure the document / web root of your web server after installing Laravel to

be the public directory. In this directory the index.php acts as the front controller for all

HTTP requests that access your domain.

Configuration Files

All Laravel application configuration files are mostly stored in the config directory. Each

option is documented so be free to browse through the files and familiarize yourself with the

options available.

Directory Permissions

You may need to configure certain permissions once you have installed Laravel. Storage

directories and bootstrap/cache directories should be writable through your web server, or

Laravel won't run. If you are using the virtual Homestead system, you should already set

these permissions.

Application Key

After installing Laravel, the next thing you should do is set your application key to a random

string. If you have installed Laravel via Composer or the Laravel installer, the php artisan

key: generate command has already set this key for you.

This string will normally have to be 32 characters long. The key can be set within the file for

the .env environment. If the .env.example file has not been renamed to .env, you should

do that now. If the application key is not set it will not be secure for your user sessions

and other encrypted data!

Additional Configuration

Almost no other configuration from the box is required by Laravel. You're free to begin

development! You may want to test the config / app.php file and its documentation

though. This includes many choices that you may want to modify according to your query,

such as timezone and locale.

Web Server Configuration

Pretty URLs

Apache

Laravel provides a public/.htaccess file that is used without the path front controller

index.php to provide URLs. Until serving Laravel with Apache, make sure the

mod_rewrite module is allowed so that the server honors the .htaccess script.

If your Apache installation does not work with the .htaccess file that is shipping with

Laravel, try this alternative:

Options +FollowSymLinks-Indexes

RewriteEngine On

RewriteCond%{HTTP: Authorization}.

RewriteRule.*-[E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

RewriteCond%{REQUEST_FILENAME}!-d

RewriteCond%{REQUEST_FILENAME}!-f

RewriteRule^index.php[L]

Nginx

If you use Nginx, all requests will be directed to the index.php front controller via the

following directive in your site configuration:

location /{

try_filesuriuri//index.php?$query_string;

}

7.3 Laravel Database Connectivity

 Configuration

 Read / Write Connections

 Running Queries

 Database Transactions

 Accessing Connections

 Query Logging

Configuration

Laravel makes it extremely simple to connect to databases, and to run queries. The database

configuration file is app/config/database.php. You can define all of your database

connections in this file, and specify which connection should be used by default. The file

provides examples for all of the available database systems.

Currently Laravel supports four database systems: MySQL, Postgres, SQLite, and SQL

Server.

Read / Write Connections

Sometimes you might want to connect one database to SELECT statements, and another for

INSERT, UPDATE, and DELETE statements. Laravel makes this a breeze, and it will always

use the proper connections whether you're using raw queries, the query builder or the

Eloquent ORM. To see how to configure read / write connections, let's take a look at this

example:

'mysql'=>array(

'read'=>array(

'host'=>'192.168.1.1',

),

'write'=>array(

https://laravel.com/docs/4.2/database#configuration
https://laravel.com/docs/4.2/database#read-write-connections

'host'=>'196.168.1.2'

),

'driver'=>'mysql',

'database'=>'database',

'username'=>'root',

'password'=>'',

'charset'=>'utf8',

'collation'=>'utf8_unicode_ci',

'prefix'=>'',

),

Note that the configuration list has been introduced with two keys: read and write. Both

of these keys have a single key sequence values: host. The rest of the read and write

connection database options will be merged from the main mysql array. So, if we want to

override the values in the main array, we need only place items in the read and write arrays.

So, in this case, 192.168.1.1 will be used as the "read" connection, while

192.168.1.2 will be used as the "write" connection. The credentials of the database,

prefix, character set, and all other options in the main mysql array will be shared over both

connections.

Running Queries

Once you have configured the link to your database, you may use the DB class to run queries.

Running A Select Query

$results=DB::select('select * from users where id =

?',array(1));

The select method will always return an array of results.

Running An Insert Statement

DB::insert('insert into users (id, name) values (?,

?)',array(1,'Parag'));

https://laravel.com/docs/4.2/database#running-queries

Running An Update Statement

DB::update('update users set count = 100 where name =

?',array('Sneha'));

Running A Delete Statement

DB::delete('delete from users');

Note: The update and delete statements will return the number of rows affected by the

operation.

Running A General Statement

DB::statement('drop table users');

Listening For Query Events

You may listen for query events using the DB::listen method:

DB::listen(function($sql,$bindings,$time)

{

//

});

Database Transactions

You may use the transaction method to execute a series of operations within a database

transaction:

DB::transaction(function()

{

DB::table('users')->update(array('count'=>1));

DB::table('posts')->delete();

});

Note: Any exception thrown into the closing of the transaction would cause the

transaction to be immediately rolled back.

You may need to start a transaction sometimes by yourself:

DB::beginTransaction();

A transaction can be rollbacked using rollback method:

DB::rollback();

Finally, the commit method allows you to commit a transaction:

DB::commit();

Accessing Connections

You can access these via DB::connection method when using multiple connections:

$users=DB::connection('foo')->select(...);

You can also access the raw PDO case, which underlies:

$pdo=DB::connection()->getPdo();

You might need to reconnect to a given database sometimes:

DB::reconnect('foo');

If you want to disconnect from the specified database due to more than the underlying PDO

instance's max_connections limit, use the disconnect method:

DB::disconnect('foo');

Query Logging

By default Laravel keeps a log of all queries running for the current request in memory.

However, in some cases this can cause the application to use excess memory, such as when

inserting a large number of rows. To disable the log, you may use the disableQueryLog

method:

DB::connection()->disableQueryLog();

You can use getQueryLog method to get an array of the queries you have executed:

$queries=DB::getQueryLog();

Exercise:

1. What is framework? List various PHP frameworks.

2. Explain the reason to use the PHP frameworks.

3. Explain MVC along with its goal.

4. State the various advantages and disadvantages of MVC.

5. List the system requirement for the installation of the Laravel framework.

6. State the various steps involved in the installation of the Laravel framework.

8. Introduction to CMS

In this chapter, we are going to study the concept of Content Management System

(CMS), various CMS tools used to design the website, installation of WordPress, website

creation using WordPress, etc.

8.1 Introduction

A content management system or CMS is a program that makes content easier to

create, edit, organize, and publish.WordPress is a content management system that enables

you to build your content and publish it on the internet.While being mostly used for web

publishing, it can be used to handle content on an intranet, or on a single computer.

WordPress allows users to have complete control over the files, documents, and

interface design and display. To publish content using WordPress, you do not need to know a

single line of code.The beauty of a good content management system is to allow any user

with no technical know-how to build and manage their contents.

Average user or small business in the earlier days had to rely on static HTML pages

because they couldn't afford a content management system that would cost hundreds of

thousands of dollars.That problem has now been solved. WordPress is free and open source

for anybody to use.

WordPress is used creatively in all manner of ways.We've seen WordPress being used

to power small business websites, forums, large university websites, portfolios, real estate

listing platform, company internal communication network, online archives, film repositories,

application technology base, arcade pages, and anything else you may think of.

There are various content management systems that will provide the features

mentioned above. Some of them,

 WordPress

 Joomla

 Drupal

 Magento

8.1.1 WordPress

WordPress is a free and open-sourcecontent management system (CMS) based on

PHP & MySQL.The features include a design module and a prototype framework.It is mostly

related to blogging but embraces other forms of web content including more conventional

mailing lists and forums, media galleries, and online stores.Used as of April 2019 by over 60

million websites, including 33.6 percent of the top 10 million websites, WordPress is the

most popular website management system in use.WordPress was also used in other

application areas, such as omnipresent display systems (PDS).

WordPress was launched May 27, 2003 as a b2/cafelog fork by its owners, Matt

Mullenweg and Mike Little.The software is published (or later) under the GPLv2 license.To

function, WordPress has to be installed on a web server, either as part of an Internet hosting

service such as WordPress.com or as part of a computer running the WordPress.org software

package to act as a network host in its own right.A local machine may be used for the

research and learning purposes of a single user.

8.1.2 Joomla

Joomla is a free and open source content management system (CMS) created by

Open Source Matters, Inc. for the publication of web content.It is built on a web application

framework for model – view – controller which can be used independently of the CMS.

Joomla writes in PHP, using object-oriented programming techniques (since version

1.5) and software design patterns, stores data in a database called MySQL, MS SQL (since

version 2.5), or PostgreSQL (since version 3.0), and includes features such as web loading,

RSS feeds, printable page versions, news alerts, forums, search and language

internationalization support.

There are more than 8,000 free and commercial extensions available from the official

Joomla Extensions Directory, and more from other sources.It is estimated to be the second

most frequently used online content management system, after WordPress.

8.1.3 Drupal

Drupal is a free and open-source content management system developed under the

GNU General Public License and distributed under PHP.Drupal provides at least 2.3 per cent

of all websites worldwide with a back-end framework – ranging from personal blogs to

corporate, political, and government sites.Drupal is also used by systems for knowledge

management and for business collaboration.

The Drupal ecosystem comprised more than 1,37 million members as of March 2019,

including 114,000 actively contributing users, resulting in over 42,650 free modules which

extend and customize the Drupal functionality, more than 2,750 free themes that modify the

look and feel of Drupal, and at least 1,270 free distributions that allow users to set up a

complex, usage-specific Drupal quickly and easily in fewer steps.

Drupal's initial version, known as the Drupal core, includes basic features common to

content-management systems.These include registration and maintenance of user account,

menu management, RSS feeds, taxonomy, configuration of the page layout, and system

management.The installation of the Drupal core can be a basic website, a single- or multi-

user blog, an internet forum, or a community website offering user-generated content.

Drupal also describes itself as a platform for Web applications.As contrasted with

popular frameworks, Drupal meets most of the functionality specifications generally accepted

for such web frameworks.

Drupal runs on any computing platform that supports a web server that can run PHP,

as well as a database that can store content and configuration.

8.1.4 Magento

Magento is an e-commerce platform open-source, written in PHP.The software was

originally developed with the assistance of volunteers by Varien, Inc, a US private company

headquartered in Culver City, California.

On 31 March 2008, Varien released the software's first general-availability

update.Roy Rubin, Varien's former CEO, later sold a large share of the company to eBay,

which ultimately purchased it completely and then sold it to Permira; Permira subsequently

sold it to Adobe.

Magento 2.0 was released on 17th November 2015.Among the features which have

changed in V2 are:Reduced table locking problems, improved page caching, enterprise-grade

scalability, rich built-in data snippets, new file structure with easier customization,CSS

Preprocessing using a resolution of the LESS & CSS URL, improved performance and a

more organized code base.Magento uses the relational database management system MySQL

or MariaDB, the programming language for PHP, and the Zend Framework elements.It

applies object-oriented programming conventions and model – view – controller

architecture.In addition, Magento uses the model entity – attribute – value to store data.In

addition, using the JavaScript library Knockout.js, Magento 2 introduced the Model-View-

View model pattern to its front-end code.

8.2 WordPress

8.2.1 History and Overview

A predecessor of WordPress was b2/cafelog, more commonly known as b2 or

cafelog.As of May 2003, b2/cafelog was reported to have been built on around 2000 blogs.It

was written in PHP by Michel Valdrighi, who is now a contributing WordPress developer, for

use with MySQL.Though WordPress is the official successor, there is also another project,

b2evolution, in active development.In 2003, WordPress first appeared as a joint effort

between Matt Mullenweg and Mike Little to build a b2 fork.The word WordPress was coined

by Christine Selleck Tremoulet, a colleague of Mullenweg.As of June 2019, 60.8 percent of

all websites whose content management system is established are using WordPress.This

represents 27.5 percent of the top ten million websites.

"WordPress is a webpage-making factory" is a core analogy intended to clarify what

WordPress is and does.It stores your content that allows you to create and publish web pages

that only require a domain and a working hosting site.WordPress uses a template processor to

have a Web design program.The architecture is a front controller, which routes all non-static

URI requests into a single PHP file that parses the URI and defines the target page.This

enables more human-readable permalinks to be supported.

8.2.2 Installation

WordPress is very easy and simple to install.Through the hosting, we'll see step by

step process of installing on the live domain.

Step 1:Login to the cPanel of the website where you want to install the WordPress.

Step 2: After successful login, cPanel dashboard will get open. At the bottom of this

dashboard, there is tab as Softaculous Apps Installer. Click on the WordPress under this tab.

Step 3: Click in Install button.

Step 4: Fill all the relevant information on the setup page. Remember to keep Directory

empty under Software Setup part. Also select the theme then click on Install button.

Step 5: WordPress will be installed successfully after the completion of above step & the

following window will appear showing the same message.

Step 6: Now you can see that the WordPress website is ready to use & edit.

8.2.3 Dashboard

The Dashboard's key idea is to give you a place to get an at-a-glance rundown of

what's happening to your site.You can catch up on news, view your draft articles, see who's

linking to you or how popular your content has been, easily message a no-frills post, or check

your latest comments out and moderate.It's like an eye view of operations from a bird, from

which you can swoop down into the specific details. The Dashboard contains the following

modules:

 At a Glance

 Quick Draft

 Activity

 Your Stuff

 What‘s Hot

 Stats

At a Glance

The module At a Glance is just as it sounds!It gives a "at-a-glance" look at the posts,

sites, reviews, theme and spam posts on your blog.Click on the links, and you will be taken to

the corresponding screen.Akismet's caught track of your total comments and spam.You can

also click on the numbers to load the screen with relevant comments.

Quick Draft

Quick Draft is a mini-post editor, which allows the Dashboard to create instant

content.In the post you can include a title and body text, and save it as a Draft.You should

use the Add New Post screen for additional options, such as adding categories or setting a

future publication date.Below you will see links to your most recent drafts, allowing a one-

click Dashboard access.When you click on any of them, editing the post should take you

straight away.

Activity

The module has many new features that make working with the Dashboard's

comments quick and easy.

Your Stuff

On WordPress.com, the Your Stuff module shows links to your recent activity.The

module will display links to comments you have left on other WordPress.com blogs, as well

as links to posts on any of your blogs where you have made changes recently.

What's Hot

What’s Hot is a module that shows links to:

 Top WordPress.com blogs

 Latest Posts

 Top Posts from around WordPress.com

 Recent posts from the WordPress.com News blog

Stats

The module Stats is a favorite among many users. It will show you a graph of the

traffic in your blog and links to some popular areas of your site. The graph simply works like

the graphs on the Site Stats screens, so you can click a point to see more information about

the traffic of that day.

8.2.4 Add and Publish Post

WordPress Posts are entries that appear in reverse chronological order on the home

page of the blog or on the posts page. If any sticky posts are made, they will appear before

the other posts. You can find posts in the Archives Categories Recent Post, and other widgets.

Posts are shown in the blog's RSS feed, too. In Reading Settings, you can control how many

posts are shown at one time.

Add WordPress Post

Step 1: You must first log in to your site's wp-admin panel, then go to Posts -> Add New.

Step 2: You'll see the WordPress posts editor on this page. The core parts of this page are:

 Post Title - In this field enter the title of your post. It will show above your content on

your theme.

 Post Content - You can add the actual content of your post to WordPress

WYSIWYG editor. Note that it does have two tabs - Visual (To format your text, use

the editor) and Text (Directly add your HTML code).

Step 3: You need to publish it once you enter your first WordPress post's content. Publishing

is getting your post onto your website.

Step 4: You can go to your site's front page now to check out the newly created blog post.

8.2.5 Media Library

The Media Library is where all of your images audio, videos and documents can be

managed in one location.

Navigate to the Media Library

Add Files from Computer

Click Add New to select the files you want to upload, or drag and drop files directly

onto the page to add files from your computer.

8.2.6 Creating a Menu

Menu must be defined before various items are added to it. Menu can be created in

WordPress using given steps.

1. Sign in to Dashboard of WordPress.

2. Select the Menus option to bring up the Menu Editor from the Appearance menu on

the left-hand side of the Dashboard.

3. Choose New Menu at the top of the page

4. In the Menu Name box type a name for your new menu

5. Click the Create Menu button.

Adding Items to Menu

Different types of links can be added to the menu; these are divided between panes

left of the currently edited menu.

1. Locate the Pages Pane.

2. Select the View All link to create a list of all the currently published Pages on your

site within this window.

3. Tap the checkbox next to the title of each page to pick the Pages you want to add.

4. To add your selection(s) to the menu you created in the previous step, click the Add

to Menu button located at the bottom of this window.

5. Once you have added all the menu items you want, press the Save Menu button.

Deleting Menu Item

1. Locate the menu item you wish to delete in the menu editor window

2. To expand it, press the arrow icon in the top right corner of the menu item / window.

3. Click the Link to Remove. The menu item / box shall be deleted immediately.

4. To save your changes, press the Save Menu button.

Creating Multi-Level Menus

When planning menu structure it helps to consider each menu item as a heading in a

formal report document. In a formal report, the headings of the main section (Level 1

headings) are the closest to the left of the page; the headings of the sub-section (Level 2

headings) are slightly further to the right; any other subordinate headings within the same

section (Level 3, 4, etc.) are further to the right.

The WordPress menu editor allows a quick 'drag and drop' interface to construct

multi-level menus. Drag up or down the menu items to change their appearance in the menu.

To create sub-levels within your menu, drag the menu items left or right.

You need to place the 'child' underneath its 'parent' and then move it slightly to the

right to make one menu item a subordinate of another.

1. Place the mouse over the menu item 'Child'

2. Drag it to the right while holding the left mouse button.

3. Release mouse button.

4. For each sub-menu item, repeat these steps

5. To save your changes, press the Save Menu button in menu editor.

After completing above mentioned steps, your newly created website will get ready on the

specified domain or locally. You can see the website by entering the URL in address bar of

your browser.

Exercise:

1. What is WordPress? How safe is a website on WordPress?

2. What are the positive aspects of WordPress? Are there any limitations to a WordPress

website?

3. What are the disadvantages of WordPress?

4. What are the rules that you have to follow for WordPress plugin development?

5. What is the prefix of WordPress tables by default? How many tables are there in

WordPress by default?

6. Why does WordPress use MySQL?

7. Why is a static front page used in WordPress and how can you create one?

8. What are the differences between Posts and Pages?

9. How to embed videos in WordPress?

10. Why is wordpress.com considered more secure than wordpress.org?

11. What are the system requirements for installing WordPress?

12. What are the steps should be followed for installing WordPress?

13. Explain the components shown on the Home screen of WordPress.

14. How many types of users WordPress have?

15. What steps you would take if a WordPress site is hacked?

