

 Yashwantrao CMP508

 Chavan

 Maharashtra Web Technologies

 Open University

Yashwantrao Chavan Maharashtra Open University

Dnyangangotri, Near Gangapur Dam

 Nashik-422222

 WEB Technologies

Yashwantrao Chavan Maharashtra Open University

Vice-Chancellor: Dr. R. Krishnakumar

SCHOOL OF COMPUTER SCIENCE: SCHOOL COUNCIL

Dr. Ramchandra Tiwari
Director

School of Computer Science

Y.C.M.Open University Nashik

Shri. Pramod Khandare

Assistant Professor

School of Computer Science

Y.C.M.Open University,

Nashik

Prof. M.S. Karyakate
Associate Professor

Computer Department

VIIT, Pune

Dr. Manoj Killedar
 Director, School of Architecture,

Science & Technology,

Y.C. M. Open University, Nashik

Shri. Surendra Patole

Assistant Professor

School of Commerce &

Management Y.C.M. Open

University,Nashik

Prof. M.N. Shelar

H.O.D., Computer Department

K.K. Wagh College

Pimpalgaon (B)

Dr. R.V. Vadnere

Director

School of Continuing Education

Y.C.M.Open University, Nashik

Shri. Madhav Palshikar

Associate Professor

School of Computer Science

Y.C.M. Open University,

Nashik

Shri. Mahesh Paradkar

IBM Pune

Prof. S.S. Sane

Head of Department

Computer Department

K.K.Wagh College of Engineering

Nashik

 Dr. Bharati Gawali

Associate Professor

Dept. Of Computer Science

Dr. Babasaheb Ambedkar

Marathwada University,

Aurangabad

 Mrs. Shubhangi Desle

Assistant Professor

Student Services Division

Y.C.M. Open University, Nashik

Writer/s Editor Co-ordinator

 Dr. Pramod Khandare

Assistant Professor

School of Computer Science

Y.C.M.Open University,

Nashik 422 222

Production

WEB TECHNOLOGIES

CMP508

1. Introduction to the Web 3 Counseling Sessions

History and Evolution
Web development cycle Web publishing
Web contents
Dynamic Web contents

2. Languages and technologies for browsers 3 Counseling Sessions

HTML, DHTML, XHTML, ASP, JavaScript Features and Applications

3. Introduction to HTML 3 Counseling Sessions

HTML Fundamentals HTML Browsers

HTML tags, Elements and Attributes Structure of HTML code
 Head
 Body

Lists
 Ordered List
 Unordered List
 Definition List
 Nesting List

Block Level Tags
 Block formatting, Heading, Paragraph, Comments, Text alignment,

Font size

Text Level Tags
 Bold, Italic, Underlined, Strikethrough, Subscript, superscript

Inserting graphics, Scaling images Frameset
Forms
An introduction to DHTML,DOM

4. Cascading Style Sheets 3 Counseling Sessions

The usefulness of style sheets Creating style sheets

Common tasks with CSS Font Family
 Font Metrics
 Units

Properties
Classes and Pseudo classes CSS tags

5. Introduction to Client side Scripting2Counseling Sessions


What is Scripting Language ?
Client side and server side scripting

Types of scripting languages

6. JavaScript 5 Counseling Sessions

Introduction
Operators, Assignments and Comparisons, Reserved words Starting with JavaScript

 Writing first JavaScript program
 Putting Comments Functions

Statements in JavaScript Working with objects
 Object Types and Object Instantiation

 Date object, Math Object, String object, Event object, Frame object,

Screen object

Handling Events
 Event handling attributes
 Window Events, Form Events
 Event Object
 Event Simulation

7. XML 4Counseling Sessions


 Introduction to XML,
 Anatomy of an XML document
 Creating XML Documents,
 Creating XML DTDs, XML Schemas, XSL

8. Website Design Concepts 4 Counseling Sessions

How the website should be
 Basic rules of Web Page design
 Types of Website

Reference Books :

 Web Technologies Achyut S. Godbole, AtulKahate Tata McGraw Hill
 Web Tech. & Design C. Xavier New Age
 Multimedia & Web Technology – Ramesh Bangia
 HTML : The complete reference – Thomas A. Powel
 JavaScript Bible – Danny Goodman



1

UNIT 1

INTRODUCTION TO WEB

TECHNOLOGY

Unit Structure

History and Evolution

Web development cycle

Web publishing

Web contents

Dynamic Web contents

HISTORY AND EVOLUTION OF WEB

The World Wide Web (w.w.w) allows computer users to locate and view

multimedia-based documents (i.e., documents with text, graphics, animations, audios or

videos) on almost any subject. In 1990, Tim Berners-Lee of CERN (the European

Laboratory for Particle Physics) developed the World Wide Web and several

communication protocols that form the backbone of the Web.

 The Internet‟s origins
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research

at MIT‘s Project Mac (now the Laboratory for Computer Science—the home of the World

Wide Web Consortium) was funded by ARPA—the Advanced Research Projects

Agency of the Department of Defense.

The protocols for communicating over the ARPAnet became known as TCP—the

Transmission Control Protocol. TCP ensured that messages were properly routed from

sender to receiver and that those messages arrived intact.

As the Internet evolved, organizations worldwide were implementing their own

networks for both intra-organization (i.e., within the organization) and inter-organization

(i.e., between organizations) communications. A wide variety of networking hardware

and software appeared. One challenge was to get these different networks to
communicate. ARPA accomplished this with the development of IP—the Internetworking

Protocol, truly creating a ―network of networks,‖ the current architecture of the Internet.

The combined set of protocols is now commonly called TCP/IP.

Initially, Internet use was limited to universities and research institutions; then the

military began using the Internet. Eventually, the government decided to allow access to

the Internet for commercial purposes.

 The formation of the W3C
In October 1994, Tim Berners-Lee founded an organization—called the World Wide

Web Consortium (W3C)— devoted to developing nonproprietary, interoperable

technologies for the World Wide Web. One of the W3C‘s primary goals is to make the

Web universally accessible—regardless of disability, language or culture.

The W3C is also a standardization organization. Web technologies standardized

by the W3C are called Recommendations. W3C Recommendations include the

ExtensibleHyper-Text Markup Language (XHTML), Cascading Style Sheets (CSS),

Hypertext Markup Language (HTML; now considered a ―legacy‖ technology) and the

Extensible Markup Language (XML).

A recommendation is not an actual software product, but a document that specifies a

technology‘s role, syntax, rules, etc. Before becoming a W3C

The W3C homepage (www.w3.org) provides extensive resources on Internet

and Web technologies. For each Internet technology with which the W3C is involved, the

site provides a description of the technology and its benefits to Web designers, the

history of the technology and the future goals of the W3C in developing the technology.

This site also describes W3C‘s goals. The goals of the W3C are divided into the

following categories:
User Interface Domain, Technology and Society Domain, Architecture Domain and Web

Accessibility Initiatives.

Evolution of www:

Web 1.0 – The World Wide Web (1990 – 2000)
 Remain limited mostly to static websites.
 Mostly publishing / Brochure-ware. Limited to reading only for majority.
 Proprietary and closed access.
 Corporations mostly, no communities.
 HTTP, HTML
Web 2.0 – The Social Web (2000 – 2010)

 Publishing as well as Participation
 Social Media, Blogging, Wikis
 RSS – Syndicate site contents.
 Rich User Experience
 Tagging
 Keyword Search
 AJAX, JavaScript Frameworks (jQuery, Dojo, YUI, Ext Jsetc), XML, JSON

Web 3.0 – The Semantic Web (2010 – onward)
 Mostly Drag n Drop
 Highly mobile oriented
 Widgets
 Micro blogging
 Cloud and Grid Computing
 Open ID
 Semantic Search,Semantic Techniques like RDF, SWRL, OWL etc.

WEB DEVELOPMENT CYCLE

There are numerous steps in the web site design and development process.

From gathering initial information, to the creation of your web site, and finally to

maintenance to keep your web site up to date and current.

 The basic steps of Web Development Cycle are:

 Information Gathering
 Planning
 Design
 Development
 Testing and Delivery
 Maintenance Phase

Phase One: Information Gathering

Just like Software Development ,the first step in designing a successful web site

is to gather information. Many things need to be taken into consideration when the look

and feel of your site is created.

The Client‘s business requirements and goals are understood

It is important that the web designer start off by asking a lot of questions to help

them understand the business and the needs in a web site.

Certain things to consider are:

Purpose

What is the purpose of the site? Do you want to provide information, promote a service,
sell a product… ?

Goals

What do you hope to accomplish by building this web site?

Target Audience

Is there a specific group of people that will help you reach your goals? It is helpful to
picture the ―ideal‖ person you want to visit your web site. Consider their demographics –
this will help determine the best design style for the site.

Content

What kind of information will the target audience be looking for on the site? Are they
looking for specific information, a particular product or service, online ordering…?

Phase Two: Planning

Using the information gathered from phase one, it is time to put together a plan

for the web site. This is the point where a site map is developed.

The site map is a list of all main topic areas of the site, as well as sub-topics, if

applicable. This serves as a guide as to what content will be on the site, and is essential

to developing a consistent, easy to understand navigational system. The end-user of the

web site must be kept in mind when designing the site. A good user interface creates an

easy to navigate web site.

During the planning phase, the web designer decides what technologies should

be implemented. Elements such as interactive forms, e-commerce, flash, etc. are

discussed when planning the web site.

Phase Three: Design

In this phase the look and feel of the web site is determined.

Target audience is one of the key factors taken into consideration. As part of the

design phase, it is also important to incorporate elements such as the company logo or

colors to help strengthen the identity of the company on the web site.

The web designer will create one or more prototype designs for the web site. The

client selects what suits his/her needs the best.

In this phase, communication between the client and the web designer is very

important to ensure that the final web site will be according to the client‘s requirements.

After the design is finalized the development begins.

Phase Four: Development

The developmental stage is the point where the web site itself is created. At this

time, the web designer will take all of the individual graphic elements from the prototype

and use them to create the actual, functional site.

This is typically done by first developing the home page, followed by a ―shell‖ for the

interior pages. The shell serves as a template for the content pages of your site, as it

contains the main navigational structure for the web site. Once the shell has been

created, the designer will take the client‘s content and distribute it throughout the site, in

the appropriate areas.

Elements such as interactive contact forms, flash animations or ecommerce

shopping carts are implemented and made functional during this phase, as well.

This entire time, the designer should continue to make the in-progress web site

available to the client for viewing, so that he/she can suggest any additional changes or

corrections.

On the technical front, a successful web site requires an understanding of front-

end web development. This involves writing valid XHTML / CSS code that complies to

current web standards, maximizing functionality, as well as accessibility for as large an

audience as possible.

This is tested in the next phase…and Delivered

The final web site is tested. The testing includes complete functionality of forms

or other scripts, as well compatibility issues (viewing differences between different web

browsers), ensuring that the web site is optimized to be viewed properly in the most

recent browser versions.

A good web designer is one who is well versed in current standards for web site

design and development. The basic technologies currently used are XHTML and CSS

(Cascading Style Sheets). As part of testing, the designer should check to be sure that

all of the code written for the web site validates. Valid code means that the site meets

the current web development standards.

After the web site is finalized an FTP (File Transfer Protocol) program is used to

upload the web site files to the server. Most web designers offer domain name

registration and web hosting services as well. Once these accounts have been setup,

and your web site uploaded to the server, the site should be put through one last run-

through. This is just precautionary, to confirm that all files have been uploaded correctly,

and that the site continues to be fully functional.

This marks the official launch of your site, as it is now viewable to the public. The

development of your web site is not necessarily over, though. One way to bring repeat

visitors to your site is to offer new content or products on a regular basis. Many

designers offer maintenance packages at reduced rates, based on how often you

anticipate making changes or additions to the web site.

If the client prefers to be more hands on, and update their own content, there is

something called a CMS (Content Management System) that can be implemented to the

web site. This is something that would be decided upon during the Planning stage. With

a CMS, the designer will utilize online software to develop a database driven site for you.

A web site driven by a CMS gives the client the ability to edit the content areas of

the web site on his own.

Other maintenance type items include SEO (Search Engine Optimization) and

SES (Search Engine Submission). This is the optimization of the web site with elements

such as title, description and keyword tags which help the web site achieve higher

rankings in the search engines. The previously mentioned code validation is something

that plays a vital role in SEO, as well.

THE PROCESS OF WEB PUBLISHING

Web publishing is the process of publishing original content on the Internet.

The process includes building and uploading websites, updating the associated
webpages, and posting content to these webpages online. Web publishing comprises of
personal, business, and community websites in addition to e-books and blogs.

The content meant for web publishing can include text, videos, digital images, artwork,
and other forms of media.

Publishers must possess a web server, a web publishing software, and an Internet
connection to carry out web publishing.

Web publishing is also known as online publishing.

WEB CONTENT

Web content is the textual, visual or aural content.. It may include, among other

things: text, images, sounds, videos and animations. We categorize websites according

to the content a website contains.

 There are two basic kinds of web content:

Text: Text is simple. It is added on the webpage as text blocks or within images. The
best written content is unique textual web content that is free from plagiarism. Web
content added as text can also include good internal links that help readers gain access
to more information.

 Multimedia: Another kind of web content is multimedia. Simply put,
multimedia refers to any content which is not text; some examples
include:

 Animations: Animations can be added with the help of Flash, Ajax, GIF images as
well as other animation tools.

 Images: Images are considered the most popular option to incorporate
multimedia to websites. Clip art, photos, or even drawings can be created by
means of a scanner or a graphics editor. It is recommended to optimize the
images so that the users can download them quickly.

 Audio: Different types of audio files can be added as part of the web content so
as to increase the desirability of the website.

 Video: It is the most popular multimedia contents; however, when adding video
files, the publishers should make sure that they efficiently on various browsers.

Web content management (WCM) is essential to run a website successfully. To manage
web content, publishers should organize content in line with the requirements of the
audience.

The page concept

Web content is dominated by the "page" concept.
 A web site is made up of a number of web pages. Usually most of the web site

has a home page.
A home page is a webpage that serves as the starting point of website. It is the default
webpage that loads when you visit a web address that only contains a domain name.
For example, visiting https://in.yahoo.com/ will display the Yahoo home page.
There is no standard home page layout, but most home pages include a navigation bar
that provides links to different sections within the website. Other common elements
found on a home page include a search bar, information about the website, and recent
news or updates. Some websites include information that changes every day.

STATIC AND DYNAMIC WEB CONTENT

A website can be of two types:

o Static Website

o Dynamic Website

https://techterms.com/definition/webpage
https://techterms.com/definition/website
https://techterms.com/definition/default
https://techterms.com/definition/domainname
https://techterms.com/definition/navigation_bar
https://techterms.com/definition/link

Static website

Static website is the basic type of website that is easy to create. You don't need web
programming and database design to create a static website. Its web pages are coded
in HTML.

The codes are fixed for each page so the information contained in the page does not
change and it looks like a printed page.

Advantages and disadvantages

Advantages

 No programming skills are required to create a static page.


 Inherently publicly cacheable (i.e. a cached copy can be shown to anyone).


 No particular hosting requirements are necessary.


 Can be viewed directly by a web browser without needing a web server or

application server, for example directly from a CD-ROM or USB Drive.

Disadvantages

 Any personalization or interactivity has to run client-side (i.e. in the

browser), which is 

restricting.


 Maintaining large numbers of static pages as files can be impractical without

automated tools.

Application areas of Static Website:

Need of Static web pages arise in the following cases.

 Changes to web content is infrequent

 List of products / services offered is limited

 Simple e-mail based ordering system should suffice ,No advanced online

ordering facility is required,

 Features like order tracking, verifying availability of stock, online credit card

transactions, are not needed

 Web site not required to be connected to back-end system.

Dynamic website

Dynamic website is a collection of dynamic web pages whose content changes
dynamically. It accesses content from a database or Content Management System
(CMS). Therefore, when you alter or update the content of the database, the content of
the website is also altered or updated.

Dynamic website uses client-side scripting or server-side scripting, or both to generate
dynamic content.

Client side scripting generates content at the client computer on the basis of user input.
The web browser downloads the web page from the server and processes the code
within the page to render information to the user.

In server side scripting, the software runs on the server and processing is completed in
the server then plain pages are sent to the user.

Application areas of Dynamic Website

Dynamic web page is required when following necessities arise:

Need to change main pages more frequently to encourage clients to return to site.

Long list of products / services offered that are also subject to up gradation

Introducing sales promotion schemes from time to time

Need for more sophisticated ordering system with a wide variety of functions

Tracking and offering personalized services to clients.

Facility to connect Web site to the existing back-end system

Static vs Dynamic website

Static Website Dynamic Website

Prebuilt content is same every time the

page is loaded.

Content is generated quickly and changes

regularly.

It uses the HTML code for developing a

website.

It uses the server side languages such

as PHP,SERVLET, JSP, and ASP.NET etc.

for developing a website.

It sends exactly the same response for

every request.

It may generate different HTML for each of the

request.

The content is only changes when

someone publishes and updates the file

(sends it to the web server).

The page contains "server-side" code it allows

the server to generate the unique content

when the page is loaded.

Flexibility is the main advantage of static

website.

Content Management System (CMS) is the

main advantage of dynamic website.



2

UNIT 2

LANGUAGE AND TECHNOLOGY FOR

BROWSERS

Unit Structure

HTML
DHTML
XHTML
JSP
JavaScript
Features and Applications

2.1 HTML

HTML, which stands for Hypertext Markup Language, isthe predominant

markup language for web pages. It is written in the form of HTML elements consisting of

"tags" surrounded by angle brackets within the web page content.

It allows images and objects to be embedded and can be used to create

interactive forms. It provides a means to create structured documents by denoting

structural semantics for text such as headings, paragraphs, lists, links, quotes and other

items. It can embed scripts in languages such as JavaScript which affect the behavior of

HTML web pages.

HTML can also be used to include Cascading Style Sheets (CSS) to define the

appearance and layout of text and other material. The W3C, maintainer of both HTML

and CSS standards, encourages the use of CSS over explicit presentational markup.

2.1.1 A brief history of HTML

 HTML and SGML

HTML stands for Hyper-Text Markup Language. It is a coding language, which uses a

method called markup, to create hyper-text. HTML is actually a simplified subset of a

more general markup language called SGML, which stands for Standard Generalized

Markup Language. .

The first version of the Netscape browser implemented HTML 1.0.

 HTML 1.0 and 2.0

In 1992, Berners-Lee and the CERN team released the first draft HTML 1.0,

which was finalized in 1993. This specification was so simple it could be printed on one

side of a piece of paper, but even then it contained the basic idea that has become

central in the recent evolution of HMTL, which is the separation between logical

structures and presentational elements. In 1994, HTML 2.0 was developed by the

Internet Engineering Task Force‘s HTML Working Group. This group later was

disbanded in favor of the World Wide Web Consortium (http://www.w3.org), which

continues to develop HTML.

 Browsers and HTML

Netscape was just one of a number of browsers available. Mosaic was still

offered by NCSA, Lynx was available on Unix machines, and few other companies were

creating browsers. One of them, Spyglass, was purchased by Microsoft, and became

the basis for Internet Explorer. Each browser contains, in its heart, a rendering engine,

which is the code that tells it how to take your HTML and turn it into something you can

see on the screen.

 W3C takes over: HTML 3.0 and HTML 3.2

The World Wide Web Consortium (W3C), which had taken over HTML

development, attempted to create some standardization in HTML 3.0. In 1996 a

consensus version, HTML 3.2, was issued. This added features like tables, and text

flowing around images, to the official specification, while maintaining backwards

compatibility with HTML 2.0.

 HTML 4.0x

The W3C released the HTML 4.0 specification at the end of 1997, and followed

with HTML 4.01 in 1999, which mostly corrected a few errors in the 4.0 specification.

 XHTML 1.0

This is the successor to HTML. The "X" stands for Extensible. This is a

reformulation of HTML 4.01 within XML (Extensible Markup Language), which is far

more rigorous, and is intended to start moving the creation of Web pages away from

HTML. This was released earlier this year, and is the most current standard for creating

Web pages. This introduces some interesting changes in coding. For example, virtually

all tags now have to be closed, including paragraph tags. Other tags, like the FONT tag,

have been banished in favor of using Cascading Style Sheets to control all

presentational elements.

 HTML5

HTML5 is a cooperation between the World Wide Web Consortium (W3C) and the Web

Hypertext Application Technology Working Group (WHATWG).

WHATWG was working with web forms and applications, and W3C was working with

XHTML 2.0. In 2006, they decided to cooperate and create a new version of HTML.

Some rules for HTML5 were established:

 New features should be based on HTML, CSS, DOM, and JavaScript

 Reduce the need for external plugins (like Flash)

 Better error handling

 More markup to replace scripting

 HTML5 should be device independent

 The development process should be visible to the public

The HTML5 <!DOCTYPE>

In HTML5 there is only one <!doctype> declaration, and it is very simple:

<!DOCTYPE html>

Minimum HTML5 Document

Below is a simple HTML5 document, with the minimum of required tags:

<!DOCTYPE html>
<html>
<head>
<title>Title of the document</title>
</head>

<body>
The content of the document......
</body>

</html>

 

DHTML

 Dynamic HTML, or DHTML, is an umbrella term for a collectionof

technologies used together to create interactive and animated web sites by using a

combination of a static markup language(such as HTML), a client-side scripting

language (such

as JavaScript), a presentation definition language (such as CSS), and the Document

Object Model.

DHTML allows scripting languages to change variables in a web page's definition

language, which in turn affects the look and function of otherwise "static" HTML page

content, after the page has been fully loaded and during the viewing process. Thus the

dynamic characteristic of DHTML is the way it functions while a page is viewed, not in its

ability to generate a unique page with each page load.

By contrast, a dynamic web page is a broader concept — any web page

generated differently for each user, load occurrence, or specific variable values. This

includes pages created by client-side scripting, and ones created by server-side

scripting (such as PHP, Perl, JSP or ASP.NET) where the web server generates content

before sending it to the client.

There are four parts to DHTML

Document Object Model (DOM) Scripts

Cascading Style Sheets (CSS)
XHTML

 DOM
Definition: Document Object Model; The DOM or DocumentObject Model is the API

that binds JavaScript and other scripting languages together with HTML and other

markup languages. It is what allows Dynamic HTML to be dynamic.

The DOM is what allows you to access any part of your Web page to change it

with DHTML. Every part of a Web page is specified by the DOM and using its consistent

naming conventions you can access them and change their properties.

Scripts

Scripts written in either JavaScript or ActiveX are the two most common scripting

languages used to activate DHTML. You use a scripting language to control the objects

specified in the DOM.

CascadingStyleSheets (CSS)

CSS is used in DHTML to control the look and feel of the Web page. Style sheets

define the colors and fonts of text, the background colors and images, and the

placement of objects on the page. Using scripting and the DOM, you can change the

style of various elements

XHTML

XHTML or HTML 4.x is used to create the page itself and build the elements for

the CSS and the DOM to work on. There is nothing special about XHTML for DHTML -

but having valid XHTML is even more important, as there are more things working from

it than just the browser.

Features of DHTML

There are four primary features of DHTML:

 Changing the tags and properties
 Real-time positioning
 Dynamic fonts (Netscape Communicator)
 Data binding (Internet Explorer)

Changing the tags and Properties

This is one of the most common uses of DHTML. It allows you to change the

qualities of an HTML tag depending on an event outside of the browser (such as a

mouse click, time, or date, and so on). You can use this to preload information onto a

page, and not display it unless the reader clicks on a specific link.

Real-time postioning

When most people think of DHTML this is what they expect.Objects, images, and

text moving around the Web page. This can allow you to play interactive games with

your readers or animate portions of your screen.

Dynamic Fonts

This is a Netscape only feature. Netscape developed this to get around the

problem designers had with not knowing what fonts would be on a reader's system. With

dynamic fonts, the fonts are encoded and downloaded with the page, so that the page

always looks how the designer intended it to.

Data binding

This is an IE only feature. Microsoft developed this to allow easier access to

databases from Web sites. It is very similar to using a CGI to access a database, but

uses an ActiveX control to function. This feature is very advanced and difficult to use for

the beginning DHTML writer.

XHTML

XHTML (Extensible Hypertext Markup Language) is a familyof XML markup

languages that mirror or extend versions of the widely used Hypertext Markup Language

(HTML), the language in which web pages are written.

The Main Changes

There are several main changes in XHTML from HTML:

 All tags must be in lower case

 All documents must have a doctype

 All documents must be properly formed All tags must be closed

 All attributes must be added properly The name attribute has changed

 Attributes cannot be shortened All tags must be properly nested

The Doctype

The first change which will appear on your page is the Doctype. When using

HTML it is considered good practice to add a Doctype to the beginning of the page like

this.

Although this was optional in HTML, XHTML requires you to add a Doctype.

There are three available for use.

Strict - This is used mainly when the markup is very clean and there is no 'extra' markup

to aid the presentation of the document. This is best used if you are using Cascading

Style Sheets for presentation. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional - This should be used if you want to use presentational features of HTML in

your page.<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w 3.org/ TR/ xhtml1/ DTD/ xhtml1- transitional.dtd">

Frameset - This should be used if you want to have frames on your page. <!DOCTYPE

html PUBLIC "-//W3C//DTD XHTML 1.0

Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The doctype should be the very first line of your document and should be the only

thing on that line. You don't need to worry about this confusing older browsers because

the Doctype is actually a comment tag. It is used to find out the code which the page is

written in, but only by browsers/validators which support it, so this will cause no

problems.

Document Formation

After the Doctype line, the actual XHTML content can be placed. As with HTML,

XHTML has <html><head><title> and <body> tags but, unlike with HTML, they must all

be included in a valid XHTML document. The correct setup of your file is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML1.0
Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>

<title>PageTitle</title>
OTHER HEADDATA

</head>
<body>
CONTENT
</body>
</html>

It is important that your document follows this basic pattern. This example uses

the transitional Doctype but you can use either of the others (although frames pages are

not structured in the same way).

General Rules for converting HTML to XHTML

The first line in the HTML document may be the XML processing instruction:

<? xml version="1.0" encoding="iso-8859-1"?>

W3C recommends that this declaration be included in all XHTML documents,

although it is absolutely required only when the character encoding of the document is

other than the default Unicode UTF-8 or UTF-16. I said necessary because there can be

problems with older browsers which cannot identify this as a valid HTML tag.

The second line in the XHTML document should be the specification of the document

type declaration (DTD) used. The document type declaration for transitional XHTML

documents is:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The declarations for the strict XHTML DTD is:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The declarations for the frameset XHTML DTD is:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XML requires that there must be one and only one root element for a document.

Hence, in XHTML, all tags should be enclosed within the <html> tag, ie.,<html> should

be the root element for the document.

The starting tag <html> should be modified to include namespace information.

The modification is:

<html xmlns="http://www.w3.org/1999/xhtml" lang="EN">

Attribute xmlns is the XML namespace with which we associate the XHTML

document. The value of the attribute lang is the code for the language of the document

as specified in RFC1766.

XHTML tag elements should be in lower case. That means <HTML> and <Body>

are wrong. They should be rewritten as <html> and <body> respectively.

All XHTML tags should have their end tags. In HTML it is common for paragraphs

to have only the starting <p> tag. In XHTML this is not allowed. You need to end a

paragraph with

the</p> tag. Example: <p>Hello is wrong; it should be written as<p>Hello</p>.

Empty XHTML tags should be ended with /> instead of >.

The commonly used empty tags in XHTML are:

 <meta />: for meta information (contained in the head section).
 <base />: used to specify the base URI and also the targetframe for

hyperlinks (contained in the head section).
 <basefont />: used to specify a base font for the document. Notethat

attribute 'size' is mandatory.
 <param />: parameters for applets and objects.
 <link />: to specify external stylesheets and other references.
 : to include images. Attributes 'src' for the source URIand 'alt' for

alternate text are mandatory.

: used for forced line break.
 <hr />: for horizontal rules.
 <area />: used inside image maps. Attribute 'alt' is mandatory.
 <input />: used inside forms for input form elements like buttons,

textboxes, textareas, checkboxes and radio buttons.

Example: <br clear="all"> is wrong; it should be rewritten as <brclear="all"

/>.<imgsrc="back.gif" alt="Back">is wrong; it shouldbe<imgsrc="back.gif" alt="Back" />

Proper nesting of tags is compulsory in XHTML. Example:<i>This is bold

italics<i> is wrong. It should be rewritten as<i>Thisis bold italics</i>.

Rules for XHTML Attributes

All XHTML attribute names should be in lower case.

Example: Width="100" and WIDTH="100" are wrong;

only

is correct.

width="100"

Similarly onMouseOut="javascript:myFunction();" is wrong; it should be rewritten as

onmouseout="javascript:myFunction();".

All attribute-value pairs should be quoted.

 Example: width=100 is wrong; it should be

or

 width="100" width='100'.

HTML supports certain attributes which have no values.
Examples are noshade which appears in the <hrnoshade/>tag. XHTML does not allow

such empty or compact attributes.The compact attributes generally found in HTML are

compact, nowrap,ismap, declare, noshade, checked, disabled, readonly, multiple,

selected,noresizeand defer. They shouldalways have a value. In XHTML this is done by

giving the

attribute name itself as the value!
Example: noshade becomes noshade="noshade"
checkedbecomes checked="checked".
The nameattribute is deprecated and will be removed in a
future version of XHTML and the id attribute will take its place. So, for HTML tags that

need the name attribute, an idattribute should also be specified with the same value as

that for name.

Example: <frame name="myFrame" > becomes<frame name="myFrame" id="myFrame"

>

All & (ampersand) characters in the source code have to be replaced with &, which

is the equivalent character entity

code. This change should be done in all attribute values and
URIs.

Example: Bee&Nee will result in an error if you try to validate it;
It should be written asBee&Nee.

Gois wrong; it should
be coded asGo.

XHTML Tables

For <table> tag, attribute height is not supported in XHTML 1.0. Only the width is

supported. The <td> tag does support the height attribute.

The <table>, <tr> and the <td> tag does not support the attribute background which is

used to specify a background image for the table or the cell. Background images will

have to be specified either using the style attribute or using external stylesheet. The

attribute bgcolor for background color is however supported by these tags.

XHTML Images

The alt attribute is mandatory. This value of this attribute will be the text that has to be

shown in older browsers, text-only browsers, and in place of the image when it is not

available. Note that is an empty tag.

Example: <imgsrc="back.gif" alt="Back" />

XHTML and Javascript

The type attribute is mandatory for all <script> tags. This value of type is

text/javascript for Javascript.

The use of external scripts is recommended.

Example:

<script type="text/javascript" language="javascript" src="functions.js"></script>

XHTML and Stylesheets

The type attributeis mandatory for <style> tag. The value of type is text/css for

stylesheets.

The use of external stylesheets is recommended.

Example: <link rel="stylesheet" type="text/css" href="screen.css" />

Element Prohibitions in XHTML

The W3C recommendation also prohibits certain XHTML elements
from containing some elements. Those are given below:

<a>cannot contain other<a>elements.<pre>cannotcontain

the, <object>, <big>, <small>, <sub>, or <sup>elements.

<button>cannot contain

the<input>, <select>, <textarea>, <label>, <button>,<form>, <fieldset>, <iframe>,

or<isindex>elements.

<label>cannot contain other<label>elements.<form>cannot contain

other<form>elements.

JAVASCRIPT

A scripting language developed by Netscape to enable Web authors to design

interactive sites. Although it shares many of the features and structures of the full Java

language, it was developed independently. JavaScript can interact with HTML source

code, enabling Web authors to spice up their sites with dynamic content. JavaScript is

endorsed by a number of software companies and is an open language that anyone can

use without purchasing a license. It is supported by recent browsers from Netscape and

Microsoft, though Internet Explorer supports only a subset, which Microsoft calls Jscript.

What can a JavaScript do?

JavaScript gives HTML designers a programming tool - HTML authors are normally

not programmers, but JavaScript is a scripting language with a very simple syntax!

Almost anyone can put small "snippets" of code into their HTML pages

JavaScript can put dynamic text into an HTML page - AJavaScript statement like

this: document.write("<h1>" + name + "</h1>") can write a variable text into an HTML

page

JavaScript can react to events - A JavaScript can be set toexecute when something

happens, like when a page has finished loading or when a user clicks on an HTML

element

JavaScript can read and write HTML elements - A JavaScriptcan read and change

the content of an HTML element

JavaScript can be used to validate data - A JavaScript can beused to validate form

data before it is submitted to a server. This saves the server from extra processing

JavaScript can be used to detect the visitor's browser - AJavaScript can be used to

detect the visitor's browser, and - depending on the browser - load another page

specifically designed for that browser

JavaScript can be used to create cookies - A JavaScript canbe used to store and

retrieve information on the visitor's computer

FEATURES AND APPLICATION

There are literally hundreds of difficult technologies available to the webmaster.

Making proper use of these technologies allows the creation of maintainable, efficient

and useful web sites. For example, using SSI (server side includes) or CSS (cascading

style sheets) a webmaster can change every page on his web site by editing one file.

A few of the more common technologies are listed below.

 CGI

Common Gateway Interface is one of the older standards on the internet for

moving data between a web page and a web server. CGI is by far and away the most

commonly used method of handling things like guestbooks, email forms, message

boards and so on. CGI is actually a standard for passing data back and forth and not a

scripting language at all. In fact, CGI routines are commonly written in interpreted

languages such as PERL or compiled languages like C.

 CSS 
 Cascading Style Sheets to format your web pages anyway that you want.

 CSS is a language that describes the style of an HTML document.
 CSS describes how HTML elements should be displayed.

 

 JavaScript

This is a scripting language which is interpreted and executed by the browser. It is

very useful for getting tasks done on the client, such as moving pictures around the

screen, creating very dynamic navigation systems and even games. JavaScript is

generally preferable on internet sites because it is supported on more browsers than

VBScript, which is the chief competitor.

 JSP
 Java Server Pages (JSP) is a server-side programming technology that

enables the creation of dynamic, platform-independent method for building Web-based
applications. JSP have access to the entire family of Java APIs, including the JDBC API
to access enterprise databases.

ASP and ASP.NET

ASP stands for Active Server Pages. ASP is a development framework for building web
pages.ASP supports many different development models:
Classic ASP
ASP.NET Web Forms
ASP.NET MVC
ASP.NET Web Pages
ASP.NET API
ASP.NET Core

The ASP Technology

ASP and ASP.NET are server side technologies.
Both technologies enable computer code to be executed by an Internet server.
When a browser requests an ASP or ASP.NET file, the ASP engine reads the file,
executes any code in the file, and returns the result to the browser.

 Office

The Microsoft Office suite includes a number of tools, including Word, Excel,

Access and Powerpoint. Each of these tools has the ability to save in HTML format and

has special commands for the internet. This is especially useful, for example, if you work

in an office where people are trained in Excel and you don't want to retrain them to

create web pages. On the other hand, if you are creating internet web sites (as opposed

to intranet sites) you probably would be better off using web specific products to edit

your web pages.

 Perl

A great scripting language which makes use of the CGI standard to allow work to

be done on the web server. PERL is very easy to learn (as programming languages go)

and straightforward to use. It is most useful for guestbooks, email forms and other

similar, simply tasks. PERL's primary disadvantage is the overhead on the server is very

high, as one process is created each time a routine is called, and the language is

interpreted, which means the code is recompiled each time it is run. For complex tasks,

a server-side scripting language such as PHP or ASP is much preferred.

 PHP

This language is, like ASP, used to get work done on the server. PHP is similar in

concept to ASP and can be used in similar circumstances. PHP is very efficient, allows

access to databases using products such as MySQL, and can be used to create very

dynamic web pages.

 SSI

If your site is hosted on a typical Apache server, then you probably can use

something called Server Side Includes. This is a way to get the web server to perform

tasks before displaying a web page. One of the most common uses us to, well, include

common text. This is great when you have, for example, a navigation system which is

common to all of your pages. You can make one change in an SSI file and thus change

your entire web site.

SSI is very common but has really been superceded by languages such as PHP.

The overhead of SSI on the server is high as each page is scanned for SSI directives

before passing it to the browser.

 VBScript

Visual Basic Scripting was Microsoft's answer to JavaScript. VBScript is a good

tool for any site which is intended to be only displayed by the Internet Explorer browser.

In my opinion, VBScript should never be used on a web site - JavaScript is preferable

due to a wider acceptance among browsers.



3

INTRODUCTION TO HTML

Unit Structure

HTML Fundamentals

HTML Browsers

HTML tags, Elements and Attributes

Structure of HTML code

 Head Body

 Ordered List
 Unordered List
 Definition List
 Nesting List

HTML FUNDAMENTALS

HTML – HyperText Markup Language – The Language of Web Pages on the World
Wide Web.
HTML is a text formatting language.
Its collection of ―TAGS‖, that are used to make web documents that are displayed using

browsers on internet.

HTML is platform independent language.

To display a document in web it is essential to mark-up the different elements (headings,

paragraphs, tables, and so on) of the document with the HTML tags.

To view a mark-up document, user has to open the document in a browser.

Browser – A software program which is used to show web pages

A browser understands and interpret the HTML tags, identifies the structure of the

document (which part are which) and makes decision about presentation (how the parts

look) of the document.

We can also make documents look attractive using graphics , fonts size and color using

HTML

User can make a link to the other document or the different section of the same

document by creating Hypertext Links also known as Hyperlinks.

How to make HTML pages?

There are many different programs that you can use to create web documents.

HTML Editor – A word processor that has been specialized to make the writing of HTML

documents more effortless.

HTML Editors enable users to create documents quickly and easily by pushing a few

buttons. Instead of entering all of the HTML codes by hand. These programs will

generate the HTML Source Code for you.

HTML Editors are excellent tools for experienced web developers; however; it is

important that you learn and understand the HTML language so that you can edit code

and fix ―bugs‖ in your pages.

Editing HTML

We can use a plain text editor (like Notepad) to edit HTML.
We can also use dreamviewer or frontpage
When you save an HTML file, you can use either the .htm or the

.html file extension.
HTML gives authors the means to:
Publish online documents with headings, text, tables, lists, photos, etc.

Retrieve online information via hypertext links, at the click of a button.

Design forms for conducting transactions with remote services, for use in searching for

information, making reservations, ordering products, etc.

Include spread-sheets, video clips, sound clips, and other applications directly in their

documents.

TAGS, ELEMENTS, ATTRIBUTE

HTML is set of instruction.

These instruction, along with the text to which the instruction apply are called

HTMLelements.

The HTML instructions are themselves called as tags, and look like <element_name> --

that is, element name surrounded by left and right angle brackets(<>).

HTML Tags

HTML markup tags are usually called HTML tags:
HTML tags are keywords surrounded by angle brackets like <html>

HTML tags normally come in pairs like and

The first tag in a pair is the start tag, the second tag is the end tag

Start and end tags are also called opening tags and closing tags

Tags are used to represent various elements of web page like Header, Footer,

Title, Images etc. Tags are of two types:

Container Tags, Empty Tags.

Container Tags:

 These tags are always paired with closures tags are called

container tags.
 These tags activate an effect and have a companion tag to

close/discontinue the effect.
 Tags which have both the opening and closing i.e. <TAG> and

</TAG>
 For example tag starts bold effect for text and its companion tag

 ends the bold effect.
 Statement like: How
 Will have word How in bold.

 The <HTML>, <HEAD>, <TITLE> and <BODY><SCRIPT><A>

etc. tags are all container tags.

Empty Tags:

 Tags, which have only opening and no ending, are called empty

tags/ standalone tag. The
 <HR>, which is used to draw horizontal, rule across the width of the

document, and line break
 tags are empty tags.

 When client request for a page from web server browser fetches. .

 All web pages contain instructions for display called ‗tags‘.
 Browsers read tags and display page according to tags on client

computer

HTML Attributes

HTML elements can have attributes.

Attributes provide additional information about an element about how the tag should

appear or behave.

Attributes are always specified in the start tag .

An element‘s start tag may contain any number of space separated attribute/value pairs.

Attributes consist of a name and a value separated by an equals
(=) sign (name/value pairs like: name = "value").

For example, consider the tag BODY, which marks as the beginning (or end) of HTML

body.

This tag can have several attributes, one of them is BGCOLOR, specific the background

color of the document.

<BODY bgcolor =

‖background_color‖

background

=

―background_image‖>.

Attribute values should always be enclosed in quotes.

Double style quotes are the most common, but single style quotes are also allowed.

Many attributes are available to HTML elements, some are common across most

tags, and others can only be used on certain tags. Some of the more common attributes

are:

Attribute Description Possible Values

Class Used with Cascading (the name of a predefined

 Style Sheets (CSS) class)

Style Used with Cascading (You enter CSS code to

 Style Sheets (CSS) specify how the way the

 HTML element is presented)

Title Can be used to display (You supply the text)

 a "tooltip" for your

 elements.

STRUCTURE OF HTML CODE

HTML documents are structured into two parts, the HEAD, and the BODY.

Both of these are contained within the HTML element – it simply denotes its HTML

document

The head contains information about the document that is not generally displayed with

the document, such as its TITLE.

The BODY contains the body of the text

Elements allowed inside the HEAD, such as TITLE, are not allowed inside the BODY,

and vice versa.

Creating a Basic Starting Document

 page1.html

<HTML>
<HEAD>
<TITLE>My First Page</TITLE>
</HEAD>
<BODY>
 Hello World !!!

 I am learning Web Technology.
</BODY>
</HTML>

The HEAD of your document point to above window part.
The TITLE of your document appears in the very top line of the user‘s browser. If the
user chooses to ―Bookmark‖ your page or save as a ―Favorite‖; it is the TITLE that is
added to the list.
The text in your TITLE should be as descriptive as possible because this is what many
search engines, on the internet, use for indexing your site.

Setting Document Properties

Document properties are controlled by attributes of the BODY element. For example,
there are color settings for the background color of the page, the document‘s text and
different states of links.

BODY tag
(main content of document)

The BODY tag specifies the main content of a document. You should put all content that
is to appear in the web page between the <BODY> and </BODY> tags.
The BODY tag has attributes that let you specify characteristics for the document. You
can specify the background color or an image to use as a tiled background for the
window in which the document is displayed. You can specify the default text color, active
link color, unvisited link color, and visited link color. You can specify actions to occur
when the document finishes loading or is unloaded, and when the window in which the
document is displayed receives or loses focus.

Syntax

<BODY
 BACKGROUND="bgURL"
 BGCOLOR="color"
 TEXT="color"
 LINK="color"
 ALINK="color"
 VLINK="color"
 ONLOAD="loadJScode"
 ONUNLOAD="unloadJScode"
 ONBLUR="blurJScode"
 ONFOCUS="focusJScode"
 CLASS="styleClass"
 ID="namedPlaceOrStyle"
 LANG="ISO"
 STYLE="style"
>
...
</BODY>

BACKGROUND="bgURL" (Depreciated)
specifies an image to display in the background of the document. The URL value can be
an absolute URL
for example, "http://www.webopedia.com/imagesvr_ce/2123/computer.jpg"
or a relative URL
for example, "images/image1.gif".
The image is tiled, which means it is repeated in a grid to fill the entire window or frame
where the document is displayed.

 BGCOLOR="color" (Depreciated)
sets the color of the background. See Color Palette for information about color values.

TEXT="color" (Depreciated)
sets the color of normal text (that is, text that is not in a link) in the document. See Color
Palette for information about color values.

LINK="color" (Depreciated)
sets the default text color of unvisited links in the document. An unvisited link is a link
that has not been clicked on (or followed)..

ALINK="color" (Depreciated)

http://www.webopedia.com/imagesvr_ce/2123/computer.jpg
https://networking.ringofsaturn.com/Web/colorpalette.php
https://networking.ringofsaturn.com/Web/colorpalette.php
https://networking.ringofsaturn.com/Web/colorpalette.php
https://networking.ringofsaturn.com/Web/colorpalette.php

specifies the color to which links briefly change when clicked. After flashing the ALINK
color, visited links change to the VLINK color if it has been specified; otherwise they
change to the browser's default visited link color.

VLINK="color" (Depreciated)
specifies the text color of visited (followed) links in a document.

ONLOAD="loadJScode"
specifies JavaScript code to execute when the document finishes loading.

ONUNLOAD="unloadJScode"
specifies JavaScript code to execute when the document is unloaded.

ONFOCUS="focusJScode"
specifies JavaScript code to execute when the window in which the document is
displayed receives an onFocus event, indicating that the window has acquired focus.

ONBLUR="blurJScode"
specifies JavaScript code to execute when the window in which the document is
displayed receives an onBlur event, indicating that the window has lost focus.
Example
The following example sets the background color to light yellow, ordinary text to black,
unvisited links to blue, visited links to green, and active links to red:

<BODY BGCOLOR="#FFFFAA" TEXT="black" LINK="blue" VLINK="green"
ALINK="red">
...
</BODY>

Main Colours

16 Basic Colors

Headings, <Hx></Hx>

Inside the BODY element, heading elements H1 through H6 are generally used for
major divisions of the document. Headings are permitted to appear in any order, but you
will obtain the best results when your documents are displayed in a browser if you follow
these guidelines:
H1: should be used as the highest level of heading, H2 as the next highest, and so forth.
You should not skip heading levels: e.g., an H3 should not appear after an H1, unless
there is an H2 between them.

Paragraphs, <P></P>

Paragraphs allow you to add text to a document in such a way that it will automatically
adjust the end of line to suite the window size of the browser in which it is being
displayed. Each line of text will stretch the entire length of the window.

Break,

Line breaks allow you to decide where the text will break on a line or continue to the end
of the window.
A
 is an empty Element, meaning that it may contain attributes but it does not
contain content.
The
 element does not have a closing tag but in XHTML it is written as
.

Horizontal Rule, <HR>

The <HR> element causes the browser to display a horizontal line (rule) in your
document.
<HR> does not use a closing tag, </HR>.In XHTML it is written as <hr/>.

Character Formatting
In this chapter you will learn how to enhance your page with Bold, Italics, and other
character formatting options.
Objectives
Upon completing this section, you should be able to

1. Change the color and size of your text.
2. Use Common Character Formatting Elements.
3. Align your text.
4. Add special characters.
5. Use other character formatting elements.

Bold, Italic and other Character Formatting Elements

 Two sizes bigger(not supported in HTML5) will still work in
some browsers. CSS is preferred.

The size attribute can be set as an absolute value from 1 to 7 or as a relative value
using the ―+‖ or ―-‖ sign. Normal text size is 3 (from -2 to +4).

 Bold

<I> Italic </I>

<U> Underline </U>

Color = ―#RRGGBB‖ The COLOR attribute of the FONT element. E.g., <FONT
COLOR=―#RRGGBB‖>this text has color

<PRE> Preformatted </PRE> Text enclosed by PRE tags is displayed in a mono-
spaced font. Spaces and line breaks are supported without additional elements or
special characters.

 Emphasis Browsers usually display this as italics.

 STRONG Browsers display this as bold.

<TT> TELETYPE </TT> Text is displayed in a mono-spaced font. A typewriter text, e.g.
fixed-width font.

<STRIKE> strike-through text </STRIKE>

<BIG>places text in a big font </BIG>

<SMALL> places text in a small font</SMALL>

_{places text in subscript position}

^{places text in superscript style position}

Alignment
Some elements have attributes for alignment (ALIGN) e.g. Headings, Paragraphs and
Horizontal Rules.
The Three alignment values are : LEFT, RIGHT, CENTER.

<CENTER></CENTER> Will center elements.

Example:

<html>
<head>
<title> Text Formating</title>
</head>
<body>
<center>
This is normal text

 - This line is in Bold text -

 - Important text simillar to bold -

<i> - Italic text - </i>

 - Emphasized text -

<mark> - Marked text - </mark>

<small> - Small text - </small>

 - Deleted text -

<ins> - Inserted text - </ins>

_{- Subscript text -}

^{- Superscript text -}

H₂O

23rdAugust 2017

<code> - Source Code text - </code>

<tt> - Type Writter Text - </tt>

 Hello

 Hello

 Hello

 All font attributes together

</center>
</body>
</html>

List Elements

HTML supplies several list elements. Most list elements are composed of one or more
 (List Item) elements.
UL : Unordered List. Items in this list start with a list mark such as a bullet. Browsers will
usually change the list mark in nested lists.

 List item …
 List item …

List item …
List item …

You have the choice of three bullet types: disc(default), circle, square.

These are controlled by the ―TYPE‖ attribute for the element.

<UL TYPE=―square‖>
 List item …
 List item …
 List item …

 List item …
 List item …
 List item …

OL: Ordered List. Items in this list are numbered automatically by the browser.

 List item …
 List item …
 List item …

1. List item …
2. List item …
3. List item …

You have the choice of setting the TYPE Attribute to one of five numbering styles.

You can specify a starting number for an ordered list.

<OL TYPE =―i‖>

 List item …

 List item …

<P> text ….</P>

<OL TYPE=―i‖ START=―3‖>

 List item …



DL: Definition List. This kind of list is different from the others. Each item in a DL
consists of one or more Definition Terms (DT elements), followed by one or more
Definition Description (DD elements).

<DL>

<DT> HTML </DT>

<DD> Hyper Text Markup Language </DD>

<DT> DOM </DT>

<DD> A human‘s best friend!</DD>

</DL>

HTML

 Hyper Text Markup Language

DOM

 Document Object Model

Nesting Lists

You can nest lists by inserting a UL, OL, etc., inside a list item (LI).
Example
<UL TYPE = ―square‖>
 List item …
 List item …
<OL TYPE=―i‖ START=―3‖>
 List item …
 List item …
 List item …
 List item …
 List item …

 List item …

Comments <!-- -->

Although HTML documents tend to be fairly legible, there are several advantages to

adding comments to your HTML code. HTML uses the tag

<!-- to begin a comment and -->

to end a comment. Note that the comment can span multiple lines, but the browser will

ignore anything between the comment tags.

INSERTING IMAGE

Tag type: Stadalone Function:

 Images can be placed in a web page by using

tag.
 The gif format is considered superior to the jpeg format for its clarity and ability to

maintain the originality of an image without lowering its quality.

Appearance:

Attributes: SRC=URL
 ALT=string

ALIGN=left|right|top|middle|bottom
HEIGHT=n
WIDTH=n
BORDER=n
HSPACE=n
VSPACE=n

Example:

Image Maps

Image maps are images, usually in gif format that have been divided into regions;

clicking in a region of the image cause the web surfer to be connected to a new URL.

Image maps are graphical form of creating links between pages.

There are two type of image maps:

 Client side and server side

Both types of image maps involve a listing of co-ordinates that define the mapping

regions and which URLs those coordinates are associated with. This is known as the

map file.

Area ShapesUsed

Types of Shapes

Rect : used for squares and ordered shapes.

Circle : used for circles.

Poly : used for unordered shapes.

Number of coordenations for each shape:

Rect : 4 numbers for two corners

Circle : 3 numbers for the center & R

Poly : depends on the number of corners of the shape(2 numbers for each corner)

Client-side image maps (USEMAP) use a map file that is part of the HTML document (in

an element called MAP), and is linked to the image by the Web browser.

example

<IMG SRC="tomandjerry.jpg" Width=200 Height=200

border="5" USEMAP="#map1">

<MAP NAME="map1">

<AREA SHAPE="RECT" COORDS="0,0,90,90" HREF="first.html" ALT="see first…">

<AREA SHAPE="RECT" COORDS="100,100,160,160" HREF="second.html" ALT="see

second…" >

<AREA SHAPE="CIRCLE" COORDS="150,50,20" HREF="third.html"

 ALT="see third…" >

</MAP>

HOW TO MAKE A Hyper LINK

Anchor tag

The tags used to produce links are the <A> and . The <A> tells where the link

should start and the indicates where the link ends. Everything between

these two will work as a link.

The example below shows how to make the word here work as a link to yahoo.

Click here to go to yahoo.

Internal Links : Links can also be created inside large documents to simplify navigation.

Today‘s world wants to be able to get the information quickly. Internal links can help you

meet these goals.

Select some text at a place in the document that you would like to create a link to, then

add an anchor to link to like this:

 The Name attribute of an anchor element specifies a location in the document

that we link to shortly. All NAME attributes in a document must be unique.

Next select the text that you would like to create as a link to the location created above.

 Go To Book Mark

FRAMESET AND FORMS

FRAMESET

The FRAMESET element is a frame container for dividing a window into

rectangular subspaces called frames. In a Frameset document, the outermost

FRAMESET element takes the place of BODYand immediately follows theHEAD.

The FRAMESET element contains one or more FRAMESET or FRAME

elements, along with an optional NOFRAMES element to provide alternate content for

browsers that do not support frames or have frames disabled. A meaningful

NOFRAMES element should always be provided and should at the very least contain

links to the main frame or frames.

Syntax <FRAMESET>...</FRAMESET>

Attribute ROWS = MultiLengths (row lengths)

Specifications COLS = MultiLengths (column lengths)

 ONLOAD = Script (all frames have been

 loaded)
 ONUNLOAD = Script (all frames have

 been removed)
 core attributes

Contents One or more FRAMESET and FRAME

 elements, as well as an optional NOFRAMES

Contained in HTML

The FRAMESET element is a frame container for dividing a window into

rectangular subspaces called frames. In a Frameset document, the outermost

FRAMESET element takes the place of BODYand immediately follows theHEAD.

The FRAMESET element contains one or more FRAMESET or FRAME

elements, along with an optional NOFRAMES element to provide alternate content for

browsers that do not support frames or have frames disabled. A meaningful

NOFRAMES element should always be provided and should at the very least contain

links to the main frame or frames.

The ROWS and COLS attributes define the dimensions of each frame in the set.

Each attribute takes a comma-separated list of lengths, specified in pixels, as a

percentage, or as a relative length. A relative length is expressed as i* where i is an

integer. For example, a frameset defined with ROWS = "3*,*" (* is equivalent to 1*) will

have its first row allotted three times the height of thesecond row.

The values specified for the ROWS attribute give the height of each row, from top

to bottom. The COLS attribute gives the width of each column from left to right. If ROWS

or COLS is omitted, the implied value for the attribute is 100%. If both attributes are

specified, a grid is defined and filled left-to-right then top-to-bottom.

<Frame>

Syntax <FRAME>

Attribute NAME = CDATA (name of frame)

Specifications SRC = URI (content of frame)

 LONGDESC = URI (long description of

 frame)

 FRAMEBORDER = [1 | 0] (frame

 border)
 MARGINWIDTH = Pixels (margin width)

 MARGINHEIGHT = Pixels (margin

 height)

 NORESIZE (disallow frame resizing)

 SCROLLING = [yes | no | auto] (ability

 to scroll)
 core attributes

Contents Empty

Contained in FRAMESET

The FRAME element defines a frame--a rectangular subspace within a Frameset

document. Each FRAME must be contained within a FRAMESET that defines the

dimensions of the frame.

The SRC attribute provides the URI of the frame's content, which is typically an

HTML document. If the frame's content is an image, video, or similar object, and if the

object cannot be described adequately using the TITLE attribute of FRAME, then

authors should use the LONGDESC attribute to provide the URI of a full HTML

description of the object.

For better accessibility to disabled users and better indexing with search engines,

authors should not use an image or similar object as the content of a frame. Rather, the

object should be embedded within an HTML document to allow the indexing of keywords

and easier provision of alternate content.

The NAME attribute gives a name to the frame for use with the TARGET attribute

of the A, AREA, BASE, FORM, and LINK elements. The NAME attribute value must

begin with a character in the range A-Z or a-z.

The NAME should be human-readable and based on the content of the frame

since non-windows browsers may use the NAME as a title for presenting a list of frames

to the user. Forexample, NAME = left would be inappropriate since it says nothing about

the content while NAME = nav would be inappropriate since it is not very human-

readable. More suitable would be NAME =Content and NAME = Navigation. The

TITLE attribute can also beused to provide a slightly longer title for the frame, though

this is not widely supported by current browsers.

The FRAMEBORDER attribute specifies whether or not the frame has a visible

border. The default value, 1, tells the browser to draw a border between the frame and

all adjoining frames. The value 0 indicates that no border should be drawn, though

borders from other frames will override this.

The MARGINWIDTH and MARGINHEIGHT attributes define the number of pixels

to use as the left/right margins and top/bottom margins, respectively, within the frame.

The value must be non-negative.

The booleanNORESIZE attribute prevents the user from resizing the frame. This

attribute should never be used in a user-friendly Web site.

The SCROLLING attribute specifies whether scrollbars are provided for the

frame. The default value, auto, generates scrollbars only when necessary. The value

yes gives scrollbars at

all times, and the value no suppresses scrollbars--even when they are needed to see all

the content.

Example1

<!DOCTYPE html>

<html>

<frameset cols="25%,*,25%">

<frame src="first.html">

<frame src="second.html">

<frame src="third.html">

</frameset>

</html>

Example2

<HEAD>

<FRAMESET ROWS="25%,50%,25%‖

 <FRAME SRC=" ">

<FRAMESET COLS="25%,*">

 <FRAME SRC=" ">

 <FRAME SRC=" ">

 </FRAMESET>

 <FRAME SRC=" ">

</FRAMESET>

</HEAD>

Targets

 When you use links for use in a frames environment you will need to specify an

additional attribute called TARGET.

 The TARGET attribute uses the NAME attribute of the FRAME element.

 There are 4 special target names that cannot be assigned by the NAME attribute

of the FRAME tag.

1. TARGET=“_top” : This loads the linked document into the full browser

window with the URL specified by the HREF attribute. All frames disappear,

leaving the new linked page to occupy the entire window. The back is turned on.

2. TARGET=“_blank” : Opens an unnamed new browser window and loads

the document specified in the URL attribute into the new window (and your old

window stays open). The back is turned off. Other windows remains on.

3. TARGET=“_self” : Loads the document in the same window where the

anchor was {Clicked}. This is the default setting for linking elements.

4. TARGET=“_parent” : the _parent frame is a prior frameset that the current

frameset was ―spawned‖ from. If there isn‘t one it is the browser window. The

document is loaded into the area occupied by the columns or rows frameset

containing the frame that contains the link. The back is turned on. All windows

disappear.

FORMS

An HTML form is a section of a document containing normal content, markup,

special elements called controls (checkboxes, radio buttons, menus, etc.), and labels on

those controls. Users generally "complete" a form by modifying its controls (entering

text, selecting menu items, etc.), before submitting the form to an agent for processing

(e.g., to a Web server, to a mail server, etc.)

Controls

Users interact with forms through named controls.

A control's "control name" is given by its name attribute. The scope of the name

attribute for a control within a FORM element is the FORM element.

Each control has both an initial value and a current value, both of which are

character strings. Please consult the definition of each control for information about

initial values and possible constraints on values imposed by the control. In general, a

control's "initial value" may be specified with the control element's valueattribute.

However, the initial value of a TEXTAREA element is given by its contents, and the

initial value of an OBJECT element in

a form is determined by the object implementation (i.e., it lies outside the scope of this

specification).

A control's initial value does not change. Thus, when a form is reset, each

control's current value is reset to its initial value. If a control does not have an initial

value, the effect of a form reset on that control is undefined.

When a form is submitted for processing, some controls have their name paired

with their current value and these pairs are submitted with the form. Those controls for

which name/value pairs are submitted are called successful controls.

 Text Fields

<input type = "text" /> defines a one-line input field that a user can
enter text into:
<form>
First name: <input type = "text" name = "firstname" />
 Last name: <input type =

"text" name = "lastname" /></form>

Note: The form itself is not visible. Also note that the default widthof a text field is 20

characters.

<input>
This is the tag name for many of the form elements that are there to collect user input.

type
The value of this attribute decides which of the input elements this one is. In this case,

text is telling the browser that it‘s a single-line text-box.

name

size
This specifies the length of the box on your page. If the box is not wide enough for the

information that is entered, it will scroll across to allow more letters, but you should tailor

this to the type of information being asked for so that most people can see their whole

response at once.

 Password Field

<input type = "password" /> defines a password field:
<form>
Password: <input type = "password" name = "pwd" /></form>

Note: The characters in a password field are masked (shown asasterisks or circles).

These three elements give the reader a choice of options, and asks them to pick

out one or more of them.

 Radio Buttons

These small circular buttons information forms to ask the user their up a group of

them, you can only select one choice

1. 2. 3.

The code for a radio button is:

<input type = "radio" name = "choices" value = "choice1">
<input type = "radio" /> defines a radio button. Radio buttons let a user select ONLY

ONE one of a limited number of choices:

<form>
<input type = "radio" name = "gender" value = "male" /> Male
<input type = "radio"

name = "gender" value = "female" /> Female </form>

How the HTML code above looks in a browser:

Male

Female

 Check Boxes

Groups of check boxes are similar to radio buttons except they are not grouped,

so multiple boxes can be selected at thesame time. They are small squares that are

marked with a tickwhen selected. Here‘s a few to play with:

1. 2. 3.

The code for these boxes is the same as for the radio buttons, with just the value

of the type attribute changed:

<input type = "checkbox" name = "checkbox1">

<input type = "checkbox" /> defines a checkbox. Checkboxes let a user select ONE or

MORE options of a limited number of choices.

<form>
<input type = "checkbox" name = "vehicle" value = "Bike" /> I have a bike

<input type = "checkbox" name = "vehicle" value = "Car" /> I have a car
</form>

How the HTML code above looks in a browser:

I have a bike

I have a car

Notice that there is no value attribute for checkboxes, as they will either be

checked or left blank. If you want a checkbox to be checked before the user gets to

modify it, add the boolean checked attribute:

<input type = "checkbox" name = "newsletter" checked = "checked">

. This checked attribute can also be used on a radio button to set one of the

radios as selected by default.

 Drop-down Select Boxes

Using this control a user to select an option. They perform the same thing as

radio buttons, it‘s just the way they look that‘s different.

<select name = "continent" size = "1">

<option value = "Europe">Europe</option>

<option value = "America"> America</option>

<option value = "asia">asia</option>

<option value = "africa">africa</option>

</select>

select boxes are like textareas — they have their own tag, but these elements hold

further tags inside them too. Each choice you give your reader is denoted by an option.

The name/value system remains from the tags above. The size attribute sets how many

lines of options are displayed.

Submit Button

Every set of Form tags requires a Submit button. This is the element causes the browser

to send the names and values of the other elements to the CGI Application specified by

the ACTION attribute of the FORM element.

<INPUT TYPE=“SUBMIT”>

The browser will display

 Submit has the following attributes:

 TYPE: submit.

 NAME: value used by the CGI script for processing.

 VALUE: determines the text label on the button, usually Submit Query.

A submit button is used to send form data to a server. The data is sent to the

page specified in the form's action attribute. The file defined in the action attribute

usually does something with the received input.

Reset Button It is a good idea to include one of these for each form where users are

entering data. It allows the surfer to clear all the input in the form.

<INPUT TYPE=“RESET”>

Browser will display

Reset buttons have the following attributes:

TYPE: reset.

VALUE: determines the text label on the button, usually Reset.

<form name = "input" action = "html_form_action.asp" method = "get">

Username: <input type = ―text‖ />

<input type=‖Submit‖ />
</form>

If you type some characters in the text field above, and click the "Submit" button,

the browser will send your input to a page called "html_form_action.asp". The page will

show you the received input.

Table tag
A table can be inserted in a wep page using table tag

The <TABLE></TABLE> element has four sub-elements:

1. Table Row<TR></TR>.
2. Table Header <TH></TH>.
3. Table Data <TD></TD>.
4. Caption <CAPTION></CAPTION>.

The table row elements usually contain table header elements or table data elements.

Example

<table border=―1‖>
<tr>
<th> Column 1 header </th>
<th> Column 2 header </th>
</tr>
<tr>
<td> Row1, Col1 </td>
<td> Row1, Col2 </td>
</tr>
<tr>
<td> Row2, Col1 </td>
<td> Row2, Col2 </td>
</tr>
</table>



Tables Attributes



 BGColor: Some browsers support background colors in a table.

 Width: you can specify the table width as an absolute number of pixels or a
percentage of the document width. You can set the width for the table cells as
well.

 Border: You can choose a numerical value for the border width, which specifies
the border in pixels.

 CellSpacing: Cell Spacing represents the space between cells and is specified
in pixels.

 CellPadding: Cell Padding is the space between the cell border and the cell
contents and is specified in pixels.

 Align: tables can have left, right, or center alignment.
 Background: Background Image, will be titled in IE3.0 and above.
 BorderColor, BorderColorDark.

A table caption allows you to specify a line of text that will appear centered above
or bellow the table.

<TABLE BORDER=1 CELLPADDING=2>
<CAPTION ALIGN=“BOTTOM”> Label For My Table </CAPTION>

The Caption element has one attribute ALIGN that can be either TOP (Above the
table) or BOTTOM (below the table).

Table Data and Table Header Attributes

 Colspan: Specifies how many cell columns of the table this cell should span.
 Rowspan: Specifies how many cell rows of the table this cell should span.
 Align: cell data can have left, right, or center alignment.
 Valign: cell data can have top, middle, or bottom alignment.
 Width: you can specify the width as an absolute number of pixels or a

percentage of the document width.
 Height: You can specify the height as an absolute number of pixels or a

percentage of the document height.

Basic Table Code
Example:

<TABLE BORDER=1 width=50%>
<CAPTION><h1>Spare Parts <h1></Caption>
<TR><TH>Stock Number</TH><TH>Description</TH><TH>List Price</TH></TR>
<TR><TD bgcolor=red>1234-AB</TD><TD>56mm Socket</TD><TD>45.00</TD></TR>
<TR><TD >3478-AC</TD><TD>78mm
Socket</TD><TD>47.50</TD></TR>
<TR><TD>3480-AB</TD><TD>80mm Socket</TD><TD>50.00</TD></TR>
</TABLE>

Example
<table border=‖1‖ cellpadding =‖2‖>
<tr><th> Column 1 Header</th><th> Column 2 Header</th></tr>
<tr><td colspan=‖2‖> Row 1 Col 1</td></tr>
<tr><td rowspan=‖2‖>Row 2 Col 1</td>
<td> Row 2 Col2</td></tr>
<tr><td> Row 3 Col2</td></tr>
</table>

Special Things to Note

• TH, TD and TR should always have end tags.
Although the end tags are formally optional, many browsers will mess up the
formatting of the table if you omit the end tags. In particular, you should always
use end tags if you have a TABLE within a TABLE -- in this situation, the table
parser gets hopelessly confused if you don't close your TH, TD and TR elements.

• A default TABLE has no borders
By default, tables are drawn without border lines. You need the BORDER
attribute to draw the lines.

• By default, a table is flush with the left margin
TABLEs are plopped over on the left margin. If you want centered tables, You
can either: place the table inside a DIV element with attribute ALIGN="center".
Most current browsers also supports table alignment, using the ALIGN attribute.
Allowed values are "left", "right", or "center", for example: <TABLE ALIGN="left">.
The values "left" and "right" float the table to the left or right of the page, with text
flow allowed around the table. This is entirely equivalent to IMG alignment

UNIT 4

CASCADING STYLE SHEETS

The usefulness of style sheets

Types of Style sheets
Creating style sheets
Common tasks with CSS
Font Family: Font Metrics, Units
Properties
Classes and Pseudo classes
CSS tags

WHAT IS CSS STYLE?

While Web site visitors demand more attractive, fast loading, and interesting sites,

traditional formatting and page layout are no longer efficient enough to handle more

complex design requirements. As a simple example, imagine a page with hundreds of

lines and more than 50 paragraphs. Each paragraph is to be formatted by the traditional

font face and size attributes. It would be a nightmare to make any changes. Therefore a

structural cascading mechanism is urgently needed. To rescue this reusability crisis,

W3C came up with an elegant solution called the Cascading Style Sheet (CSS). It is a

structure that separates formatting features from the contents of a page.

Using the <style> element

The <style> element behaves like other HTML elements. It has a beginning and

ending tag and everything in between is treated as a style definition. As such, everything

between the <style> tags needs to follow style definition guidelines. A document‘s

<style> section must appear inside the document‘s <head> section, although multiple

<style> sections are permissible.

The <style> tag has the following, minimal format:
<style type=―text/css‖>
... style definitions ...
</style>

CSS works by specifying the element you want to modify, and stating how you

want it to be displayed by the Web browser. For example, a typical CSS may look like

this:

<style>
h2 {color:red;font-family:arial;font-size:12pt}

</style>

This CSS defines the characteristics or style for the second-level headers (i.e.,

<h2>). In this case, the text within the element <h2> will be displayed using the Arial

font, 14pt, and red color. More importantly, the style h2 can be cascaded over by

subsequent CSS definitions.

CSS is the term used to broadly refer to several style methods of applying style

elements to HTML pages. These are the inline style, internal (embedded) style, and

external style sheets. A style is simply a set of formatting instructions that can be applied

to a piece of text.

Styles define how to display HTML elements. The results are better font control,

color management, margin control, and even the addition of special effects such as text

shading. Multiple style definitions will cascade into one. This means that the first is

overridden by the second, the second by the third, and so on.

Since the beginning of HTML usage for web page creation, people have realized

the need to separate the way the page looks and the actual content it displays. Even the

first versions of HTML have supported different ways to present text using FONT, B

(bold) or I (italic) tags. Those HTML elements still exist today, but their capabilities are

far below what Web pages should provide.

As we've already said, CSS enables you to separate the layout of the Web page

from its content. This is important because you may want the content of your web page

to change frequently (for example, a current events page) but not the design/layout, or

vice versa. It is a standard of the World Wide Web Consortium (W3C), which is an

international Web standards consortium. Practically, all the style and layout guidelines

for a website are kept in CSS files that are separate from the HTML files which contain

the data, text and content for a website. Simply put, when talking

about displaying Web pages in the browser, HTML answers the question "What?", while

CSS answers "How?". When using CSS, you are defining how to display each element

of the page. You can, for example, say to show all text in DIV elements in blue color, to

have all links italic and bold, etc. With CSS you can also define classes, which tell the

browser how to display all elements of that class. Maybe you're asking yourself, why

bother with CSS? Isn't it much simpler and faster to define everything inside the HTML

page? Using HTML tags and attributes, you can modify the style of each element on

your page.

But what if you have a Web site with a larger number of pages, let's say 50?

Imagine the process of setting the style for each element on your 50 pages. And then, if

later on down the road you want to change the font style, you‘ll have to manually go

through each file and change all the HTML elements. You can count on a very long,

boring and tiring process! With CSS you can put all the information about displaying

HTML elements in a separate page. Then you can simply connect this CSS file with all

pages of your Web site, and – all the pages will follow the same guidelines. Change the

CSS file, and you have indirectly changed all pages of your Web site. In addition, you

get much greater design capabilities with CSS, as we will show in this guide.

Use of Style Sheet

Understanding the Style Sheet Cascade

The concept behind Cascading Style Sheets is essentially that multiple style

definitions can trickle, or cascade, down through several layers to affect a document.

Several layers of style definitions can apply to any document. Those layers are applied

in the following order:

 The user agent settings (typically, the user is able to modify some of these settings)
 Any linked style sheets
 Any styles present in a <style> element
 Styles specified within a tag‘s style attribute

Each level of styles overrides the previous level where there are duplicate

properties being defined. For example, consider the following two files:

mystyle.css

/* mystyle.css - Styles for the main site */
h1, h2, h3, h4 { color: blue; }
h1 { font-size: 18pt; }
h2 { font-size: 16pt; }
h3 { font-size: 14pt; }
h4 { font-size: 12pt; }
p { font-size: 10pt; }

index.html

<!DOCTYPE HTML PUBLIC ―-//W3C//DTD HTML 4.01//EN‖
―http://www.w3.org/TR/html4/strict.dtd‖><html>

<head>
<link rel=―stylesheet‖ type=―text/css‖
href=―mystyle.css‖ />
<style type=―text/css‖>
h1 { color: Red; }
</style>
</head>
<body>
<h1>A Sample Heading</h1>
...

What color will the <h1> heading in index.html be? The external style specifies

blue, but the style element specifies red. In this case, the internal style takes precedence
and the <h1> text will appear in red.

How do I use CSS?

Let's get started with using style sheets. CSS data is actually plain text written in

a specific way. Let's take a look at the contents of a sample CSS file:

It is actually completely readable – this style sheet defines that all content within

the HTML BODY element will use font Verdana with size of 9 points and will align it to

the right. But, if there's a DIV element, the text within that will be written in font Georgia.

We're also using a class named "important" (classes use

 notation, which we will cover later on). All elements of this class will have a set

background color, a border and will use Franklin Gothic Book font. As you see, style

definitions for a certain element or class are written inside curly braces (―{ }‖) and each

line ends with a semicolon ―;‖.

Now is the perfect time to explain the scoping of styles. All CSS definitions are

inheritable – if you define a style for BODY element, it will be applied to all of its children,

like P, DIV, or SPAN elements. But, if you define a style for DIV element, it will override

all styles from its parent. So, in this case, the DIV element text would use font Georgia

size 9 points and would be aligned to the right. As you see, DIV style definition for the

font family has overridden BODY style definitions. This goes on – if you have a DIV

element which is also of class "important", the class definitionwill override DIV style

definitions. In this case, such DIV element would have a background color set, a border,

it would use font Franklin Gothic Book size 9 points and be aligned to the right.

Here are the elements that would be affected by the sample CSS file.

Write it in notepad. Copy and paste the CSS sample above into this file and save

this file as ―style.css‖ into a folder on your computer. Now select File | New File and

choose ―HTML Page‖. Also save this HTML page into the same folder on your computer.

Insert the following code into the HTML page.

<link rel="STYLESHEET" type="text/css" href="style.css" />

This code should be put within the HTML page header, within HEAD element. As

you see, href attribute defines which CSS file to use. Put this LINK element within all

HTML pages you wish to apply styles to and you're done!

CSS data doesn't necessarily have to be in a separate file. You can define CSS

styles inside of a HTML page. In this case, all CSS definitions have to be inside a

STYLE element. This approach can be used to define the looks of elements that are

specific to a certain page and will not be reused by other pages. Take a look at how that

HTML page might look:

Notice that in this example you can see how to define an element of a specific

class – just add class attribute and set its value. All classes within CSS style definitions

are prefixed with a dot ("."). The third way to define a CSS style, in addition to the

previously explained methods of a separate CSS file, and the STYLE element within the

HTML page header, is inside of aspecific HTML element. To do this, you need to use the

style attribute. Take a look at the following example:

My text

All the text inside of this SPAN element will be displayed using 12 point Tahoma

font. And note – when applying styles directly to elements, as in this last example, these

style definitions will override all element definitions and class definitions previously set in

a separate CSS file or inside of HTML page header STYLE element.

CSS style definition syntax

To be able to write CSS files and definitions correctly, you need to remember few

simple rules. Although CSS syntax is rather logical and easy to learn, there are 6 basic

things you need to know. First, take a look at the structure of a style definition.

And here are 6 rules of style definitions:

 1. Every CSS definition has to have a selector and a declaration. The declaration

follows the selector and uses curly braces.

 2. The declaration consists of one or more properties separated with a semicolon.

 3. Every property has a name, colon and a value.

4. A property can have multiple values separated with a comma (e.g. "Verdana, Arial,

Franklin Gothic Book").

5. Along with a value, can also be a unit of measure (e.g. "9pt", where "pt" stands for

points). No space is allowed between the value and the unit.

 When writing CSS code, you can use whitespaces as needed – new lines, spaces,

whatever makes your code more readable.

CREATING STYLE SHEET

Styles can be defined within your HTML documents or in a separate, external

style sheet. CSS is the term used to broadly refer to several style methods of applying

style elements to HTML pages. These are the inline style, internal (embedded) style,

andexternal style sheets. A style is simply a set of formattinginstructions that can be

applied to a piece of text. You can also use both methods within the same document.

The following sections cover the various methods of defining styles.

Inline style

They are basically inline styles. You can add inline style to any "sensible" HTML

elements by using the style attribute in the associated element. The browser will then

use the inline style definitions to format only the contents of that element. The style

attribute can contain any CSS property. Example ex02-01.htm shows how to define the

style of a document body and how to change its default definitions

Example: ex02.html - Inline CSS Style

<html>
<head><title> Inline CSS Style - ex02.html</title></head>
<body style="font-family:Times;font-weight: bold; background:#000088" >

<div style="font-size:20pt;text-align:center;color:#00ffff"> Inline CSS Style </div>
<p style="font-family:arial;font-size:16pt;color:#ffff00; margin-left:20px;margin-
right:20px">
With CSS, we can control the margins of an element.
This is a paragraph with margin-left:20px and margin-right:20px.
</p>
</body>
</html>

In this example, the style attribute is used within the <body> element (line 6). The

default font and background color are now set to bold Times and color value #000088

(dark blue) respectively. All CSS properties have to be included inside the double

quotation marks of the style attribute and are separated by semi-colons.

The division element <div> in line 8 has all the CSS properties from <body> with

some additional definitions. A division is similar to a paragraph but without an additional

line break. Next to this division, there is a paragraph element <p> (line 10). This

paragraph changes the default font family to "arial" and adds some margin controls.

When an element has two or more of the same CSS definitions, the earlier ones will be

overridden by the latest one. That is, the styles will be cascaded into one.

Notice how you can call for a font using the font's name as well as point size. In

CSS, you can also use points (pt), pixels (px), percentage (%), inches (in), and

centimeters (cm) to control sizing and positioning of an element. As a good design habit,

always include the measurement units in your page

 The embedded style element <style>

In addition to inline style, there are also internal (or embedded) and external

styles. External style is a separate file for CSS properties. Internal styles are usually

defined within the <style> element. A typical example is

<style type="text/css">
h2 {color:#00ffff;font-size:20pt;text-align:center}
h4 {margin-left:70%}
body {font-family:arial;font-size:14pt;color:#ffff00; background-

image:url("backgr01.jpg")}
</style>

The browser will then read the style definitions and format the document

accordingly.

A browser normally ignores unknown elements. This means that an earlier

browser that does not support styles will ignore the <style> element, but the content of

<style> will still be displayed on the page. It is possible to prevent an earlier browser

from displaying the content by hiding it in the HTML comment symbols.

Example: ex03.html - The Style Element <style>

<html>

<head><title> The Style Element <style> I - ex03.html</title></head>

<style type="text/css">

h2 {color:#00ffff;font-size:20pt;text-align:center}

h4 {margin-left:70%}

p {font-family:arial;font-size:16pt;color:#ffff00; margin-left:20px;margin-right:20px}

body {font-family:arial;font-size:14pt;color:#ffff00; background-image: url("backgr01.jpg")}

</style>

</head>

<body>

<h2>Internal CSS Style</h2>

<h4>This area was created by CSS margin margin-left:70% and margin-right:20%</h4>

<p>With CSS, you can control text font, color, dimension, position,

margin, background and much more ...</p>

</body>
</html>

As can be seen from this example, with CSS styles you have precise control over

how you would like your text to be displayed. There are also a number of CSS elements

that can take a URL. In CSS, the URL should be contained within round brackets,

immediately preceded by the statement URL without an equals sign as illustrated in line

12.

Another useful aspect of the CSS style is the inline keyword class. This gives you

ways of breaking down your style rules into very precise pieces to provide a lot of

variety. You define a style class by putting a dot in front of a CSS definition. This class

style can be used in almost any XHTML element with attribute class= and the unique

class name.

Example ex02-03.htm defines two CSS classes. One of them is dedicated to defining a

button on your browser window.

Example: ex02-03.html - The Style Element <style> II

<html>

<head><title> The Style Element <style> II - ex02-03.html</title></head>

<style type="text/css">

.txtSt {font-family:arial;color:#ffff00;font-size:20pt; font-weight:bold}

.butSt {background-color:#aaffaa;font-family:arial;font-weight:bold;

font-size:14pt;color:#008800;width:240px;height:30px} </style>

</head>

<body style="background:#000088;text-align:center">

<div class="txtSt">Internal CSS Style Example II</div>

<input type="button" class="butSt" value="CSS Style Button" />

</body>

</html>

 External CSS style sheets

An external style sheet is ideal when the style is applied to many pages. The style

information is placed in a separate document with the file extension .css. With an

external style sheet, you can change the look of an entire Web site by changing the

corresponding style information file. Each page must link to the style sheet using the

<link> element, which usually goes within the <head> section. For example,

<head>
<link rel="stylesheet" type="text/css" href="ex02-04.css"></head>

The browser will read the style definitions from the external CSS file ex02-04.css

and format the document accordingly.

An external style sheet can be written in any text editor and should be saved with

the file extension .css. You should also be sure either that this file is in the root directory

with the HTML files that you intend to process or that the link is coded appropriately. An

example of a style sheet file is shown below.

The following is an example of an external style sheet at work

Example: ex02-04.html - External CSS Style

<html>
<head><title> External CSS Style - ex02-
04.htm</title></head>
<link rel="stylesheet" type="text/css" href="ex02-04.css">
</head>
<body>
<div style="text-align:center;color:#00ffff">
External CSS File</div>

<div>
This is a paragraph defined by the division element <div>with

margin-left:20% and margin-right:20%</div>
<hr>
<div>
This is another paragraph defined by the division element and separated

by a horizontal line. All CSS properties are defined in the
external CSS
file: ex02-04.css
</div>
</body>
</html>

This page includes a link l to an external style sheet called ex02-04.css. This file defines

all the default formatting features used inside the page. The corresponding external CSS

style sheet ex02-04.css is given next:

Example: ex02-04.css - Eternal CSS File For ex02-04.html

hr {color: sienna}
div {margin-left:20px; margin-right:20px; color:#ffff00} body {background-image:

url("backgr01.jpg");

font-family:arial; font-size:14pt;color:#ffff00; font-weight:bold}

Any page containing this link adopts the styles defined in the external style sheet

ex02-04.css. In this example, the horizontal rule line <hr> is changed to the color sienna.

Additional margin control is added to the <div> element and the element <body> is given

a different style definition. Bold "arial" and color value #ffff00 in a font size of 14 points

are used as default attributes. A background image backgr01.jpg is also added to

specify graphics as background images.

/* mystyles.css - Styles for the main site */
h1, h2, h3, h4 { color: blue; }
h1 { font-size: 18pt; }
h2 { font-size: 16pt; }
h3 { font-size: 14pt; }
h4 { font-size: 12pt; }
p { font-size: 10pt; }

Tip You can include comments in your styles to further annotateyour definitions. Style

comments begin with a /* and end with a */. Comments can span several lines, if

necessary.

FONT FAMILY & PROPERTIES

FONT FAMILY

Working with Font Styling Attributes

There are several styling attributes to control such characteristics as font families,

sizes, bolding, and spacing.

Naming font families using CSS

CSS provides a mechanism for rendering font families in a browser if those fonts are
installed on a user‘s system.This is accomplished by creating either an inline style
on an element such as a td or span element, or by creating a class rule selector within
the style element. Either way, the syntax is the same, with a list of font family
names, each separated by a comma,contained within a set of braces:
font-family {Arial, Helvetica, sans-serif;}

The browser will look first for the Arial font in the preceding example, then the

Helvetica font, then the ―default‖ sans-serif font, which is whatever sans-serif font the

user‘s operating system defaults to. If you name a font family with spaces between

characters, you need to enclose the name in quotes, as shown in bold in the following:

.myFontClass {font-family: „Helvetica Narrow‟, sans-serif}

In practice, it may be a good idea to use quotes even when there are no spaces

between characters, because some versions of Netscape 4 have trouble recognizing

font names otherwise.

Using Class Selector and Inline Style to Name a Font Family

<html>

<head>

<title>Font sizes</title>

<style type=―text/css‖>

<!--
.myFontClass {font-family: “Helvetica Narrow”, sans-serif}

-->

</style>

</head>

<body>
<p>This is an <span style=“font-family: „Helvetica Narrow‟,

sans-serif”>inline style.</p>

<p>This uses a class

selector</p>

</body>

</html>

The first bolded line shows a class selector named myFontClass, which is called by

a span element‘s class attribute (the last bolded code fragment). Figure 18-5 shows the

results from rendering Listing 18-3 in the browser.

7.1.3 Working with font styles

In traditional HTML, you can choose whether you want your font to appear in Roman

style (non-italic) font or italics by using or not using the em or i elements: Emphasizing a

point with the em element or the <i>I element</i>.

The preceding code fragment results in the following in a browser: Emphasizing a

point with the em element or the i element.

If you want to really be sure even the earliest of browsers recognize your italics, em is

the way to go. More importantly, it‘s a better choice because aural browsers should

emphasize the contents of this element to sight-impaired users of your Web site. For this

reason, this is one of the rare exceptions to the rule of using CSS for styling over HTML

elements. However, there‘s nothing wrong with using both. To use italics in CSS, simply

include the following either inline or in a rule selector: font-style: italic

Note Be sure to call it ―italic,‖ not ―italics‖ with an s. You canalso use font-style:

oblique, but older versions of Netscape will not recognize it.

Establishing font sizes

Managing font size can be tricky even with CSS, but most developers seem to

agree that the most reliable unit of measurement in CSS is the pixel. To establish size

using CSS, you simply name the property in your selector or inline style rule:

.twelve {font-size: 12px}
H1 {font-size: xx-large}
.xsmall {font-size: 25%}

In the preceding code fragment, three style rules are created, each with its own font

size. The first creates a relative size using pixels as the unit of measure. Never spell out

the word pixels in your style definition. Always use the form px. px is the most reliable

unit of measure because it is based on the user‘s screen size, and the pixel resolution of

his or her monitor. It also has virtually bug-free support across all browsers that support

CSS.

Other relative sizes include the following:

 em, for ems, is based on the em square of the base font size, so
that 2em will render a font twice as large as your document‘s base font size. Support in

Netscape 4 and IE3 is awful.

 ex is based on the X height of the base font size, so that 2ex will
render a font whose X character is twice as tall as the X character at the default, or

base, font size. This is a meaningless unit in the real world, because support is either

nonexistent or so poor as to make it worthless.
The next line in the preceding code fragment sets an absolute size called xx-large,

although it isn‘t absolute among browsers, only the one browser your user is using to

render the page. xx-large is part of a larger collection that includes the following possible

values:

xx-small, x-small, small, medium, large, x-large, xx-large Other absolute sizes include

the following:

 pt for points. This is appropriate for pages that are used for
printing, but is not a particularly reliable measure for managing screen-based fonts.
 in (inches), cm (centimeters), mm (millimeters), and pc (picas)
are all rarely used on the Web, because they‘re designed with print production in mind.

Finally, you can create a font size using a percentage by simply adding the %

character next to the actual size. This will render the font x% of the base size. You can

experiment with font sizes by modifying below code.

Creating Font Sizes with CSS and the Font Element‟s Size Attribute

<html>

<head>

<title>Font sizes</title>

<meta http-equiv=―Content-Type‖ content=―text/html;

charset=iso-8859-1‖>

<style type=―text/css‖>

<!--

.12pixels {font-size: 12px;}

.13pixels {font-size: 13px;}

.14pixels {font-size: 14px;}

.15pixels {font-size: 15px;}

.16pixels {font-size: 16px;}

.17pixels {font-size: 17px;}

.18pixels {font-size: 18px;}

.sans-serif {font-family: Frutiger, Arial, Helvetica, sansserif;}

.sans-serif-b {font-family: Frutiger, Arial, Helvetica, sansserif;

font-weight: 900;}

-->

</style>

</head>

<body>

<table width=―100%‖ border=―0‖ cellspacing=―0‖ cellpadding=―5‖ style=―border: #cccccc

thin solid‖><tr align=―left‖ valign=―top‖ bgcolor=―#D5D5D5‖ >

<td width=―26%‖ valign=―bottom‖ class=―sans-serif-b‖>Font Size</td>

<td width=―29%‖ valign=―bottom‖ class=―sans-serifb‖> Font Size +</td>

<td width=―17%‖ valign=―bottom‖ class=―sans-serifb‖> Font Size -</td>

<td width=―28%‖ valign=―bottom‖ class=―sans-serifb‖>

CSS</td>

</tr>

<tr align=―left‖ valign=―top‖>

<td><p>Font Size = 1</p></td><td>Font Size =

+1</td><td>Font Size = −1</td><td class=―12pixels‖>font-

size: 12px</td>

</tr>

<!-- Additional rows of all the font-sizes here - download actual code to view all rows --

></table>

<p> </p>

</body>

</html>

Bolding fonts by changing font weight

Font weight refers to the stroke width of a font. If a font has a very thin, or light,

stroke width, it will have a weight of 100. If it has a thick, or heavy, stroke width, it will be

900. Everything else is inbetween. To denote font width, you use a numeric set of values

from 100 to 900 in increments of 100: 100, 200, 300, 400, and so on. Or, you can use

the keywords bold, normal, bolder or lighter to set a value, which will be relative to the

font weight of the element containing the font. The keyword bold is equal to the numeric

value

 An example of using font-weight in style rules written for a style element might be as

follows:
p {font-weight: normal}
p.bold {font-weight: 900}

Making font wider or thinner using font stretch

This font property is supposed to allow you to make a font look fatter or thinner.

Background color and image

The CSS background element allows you to add a background color or image to

your Web page. For example, you may like to use a dark color to set a background

against light-colored paragraphs to create an effect of sidebars or offsetting text for

emphasis.

The CSS element <background-color> takes the general format <b style="background-

color:#rrggbb">

your body text here ...

The following example ex02-10.htm shows some simple background-color

effects:

Example: ex02-10.html - Background Color

<html>

<head><title>Background Color ex02-10.htm</title></head>

<body style="background:#f0fff0">

<div style="font-family:arial,times,serif; font-size:20pt; font-weight:bold;text-

align:center"> Background Color
Demo</div>

<div style="background-color:#00ffff;font-family:'Comic Sans MS',

times; font-size:20pt;color:#ff0000">

This text will appear in red in a small box with cyan

background on a larger honeydew background

</div>

</body>
</html>

Positioning a background image

You can further control the position at which a background image begins to tile on

your Web page. This is all done by the CSS element background-position. It takes the

general form

<body style="background-image:url (bg_image.gif) background-position: x y">

where x y represents the position of the image. Note that with the IE4 and NS4

browsers, tiling only happens down and to the right.

CLASSES AND CSS TAG

Classes and Pseudo Classes

CSS Tag.

CSS PSEUDO-CLASSES

Syntax

The syntax of pseudo-classes:

selector:pseudo-class {property:value;}

CSS classes can also be used with pseudo-classes:

selector.class:pseudo-class {property:value;}

8.1.1 Anchor Pseudo-classes

Links can be displayed in different ways in a CSS-supporting browser:

Example

a:link {color:#FF0000;} /* unvisited link */ a:visited {color:#00FF00;} /* visited link */

a:hover {color:#FF00FF;} /* mouse over link */ a:active {color:#0000FF;} /* selected link

*/

Note: a:hover MUST come after a:link and a:visited in the CSSdefinition in order to be

effective!!

Note: a:active MUST come after a:hover in the CSS definition inorder to be effective!!

Note: Pseudo-class names are not case-sensitive.

Pseudo-classes and CSS Classes

Pseudo-classes can be combined with CSS classes:

a.red:visited {color:#FF0000;}

CSS Syntax

If the link in the example above has been visited, it will be displayed in red.

CSS - The :first-child Pseudo-class

The :first-child pseudo-class matches a specified element that is the first child of another

element.

Note: For :first-child to work in IE a<!DOCTYPE>must bedeclared.

Match the first <p> element

In the following example, the selector matches any <p> element that is the first child of

any element:

Example

<html>
<head>
<style type="text/css">
p:first-child
{
color:blue;
}
</style>
</head>

<body>
<p>I am a strong man.</p>
<p>I am a strong woman.</p>
</body>
</html>

Match the first <i> element in all <p> elements

In the following example, the selector matches the first <i> element in all <p> elements:

Example

<html>
<head>
<style type="text/css">
i:first-child
{
font-weight:bold;
}
</style>
</head>

<body>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
</body>
</html>

Match all <i> elements in all first child <p> elements

In the following example, the selector matches all <i> elements in <p> elements that are

the first child of another element:

Example

<html>
<head>
<style type="text/css">
p:first-child i
{
color:blue;
}
</style>
</head>
<body>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
</body>
</html>

CSS ID AND CLASS

The id and class Selectors

In addition to setting a style for a HTML element, CSS allows you to specify

your own selectors called "id" and "class".

8.2.1 The id Selector

The id selector is used to specify a style for a single, unique element.

The id selector uses the id attribute of the HTML element, and is defined with a "#".

The style rule below will be applied to the element with id="para1":

Example

#para1
{
text-align:center;
color:red;
}

Do NOT start an ID name with a number! It will not work in Mozilla/Firefox.

The class Selector

The class selector is used to specify a style for a group of elements. Unlike the

id selector, the class selector is most often used on several elements.

This allows you to set a particular style for any HTML elements with the same

class.

The class selector uses the HTML class attribute, and is defined with a "."

In the example below, all HTML elements with class="center"
will be center-aligned:

Example

.center {text-align:center;}

You can also specify that only specific HTML elements should be affected by a

class.

In the example below, all p elements with class="center" will be center-aligned:

Example

p.center {text-align:center;}

Example:
<html>
<head>
<style type=‖text/css‖>
.para
{
font-family:Arial;
font-size:13px;
color:Aqua;
}
</style>
</head>
<body>
<p class=‖para‖>Hello World</p>
</body>
</html>





Unit 5
Introduction to Client side Scripting

What is Scripting Language ?
Client side and server side scripting
Types of scripting languages

What is Scripting Language ?

A scripting language or script language is a programming language that supports the

writing of scripts, programs written for a software environment that automate the

execution of tasks which could alternatively be executed one-by-one by a human

operator. Environments that can be automated through scripting include software

applications, web pages within a web browser, the shells of operating systems (OS), and

several general purpose and domain-specific languages such as those for embedded

systems.

What is meant by script in HTML?

It defines how locally executable scripts may be used in a web page. A particular client-

side application, such as a web browser, may support several script

languages. Script code may be executed as the document loads or at a later

time.Script code can be written directly in the HTML document

inside: SCRIPT elements.

Client-Side versus Server-Side Scripting

There are two basic varieties of scripting, client-side and server-side. As their

names imply, the main difference is where the scripts are actually executed.

Client-side scripting

Client-side scripts are run by the client software—that is, the user agent. As such,

they impose no additional load on the server, but the client must support the scripting

language being used. JavaScript is the most popular client-side scripting language, but

Jscript and VBScript are also widely used. Client-side scripts are typically embedded in

HTML documents and deployed to the client. As such, the client user can usually easily

view the scripts. For security reasons, client-side scripts generally cannot read or write

to the server or client file system.

Server-side scripting

Server-side scripts are run by the Web server. Typically, these scripts are

referred to as CGI scripts, CGI being an acronym for Common Gateway Interface, the

first interface for server-side Web scripting. Server-side scripts impose more load on the

server, but generally don‘t influence the client—even output to the client is optional; the

client may have no idea that the server is running a script. Perl, Python, PHP, and Java

are all examples of server-side scripting languages. The script typically resides only on

the server, but is called by code in the HTML document. Although server-side scripts

cannot read or write to the client‘s file system, they usually have some access to the

server‘s file system. As such, it is important that the system administrator takes

appropriate measures to secure server-side scripts and limit their access.

Unit 6

INTRODUCING JAVASCRIPT

Introduction

Operators, Assignments and

Comparisons, Reserved words

Starting with JavaScript: Writing first

JavaScript program, Putting Comments

Functions

 Statements in JavaScript

 Working with objects:

Object Types and Object

Instantiation, Date object,

Math Object, String object,

Event object, Frame object,

Screen object

 Handling Events: Event

handling attributes, Window

Events, Form Events, Event

Object, Event Simulation

 Events- Keyboard & Mouse

events

INTRODUCTION

It's important to understand the difference between Java and JavaScript.

Java is a full programming language developed by Sun Microsystems with formal

structures, etc. JavaScript is a scripting language developed by Netscape that is used to

modify web pages. Most JavaScript must be written in the HTML document between

<SCRIPT> tags. You open with a <SCRIPT> tag, write your JavaScript, and write a

closing </SCRIPT>tag. Sometimes, as an attribute to script, you may

add―Language=JavaScript‖ because there are other scripting languages as well as

JavaScript that can be used in HTML. To understand the workings of JavaScript, it is

essential to understand a few basic programming concepts.

JavaScript is object-oriented. An Object in JavaScript is a resource that has specific
characteristics known as properties and provides several services known as methods
and events.

Features of Javascript

 Javascript is object based scripting language based on c++. Scripting
language is a light weight programming language which easy to learn
and understand. It is generally used for small applicatons.

 Javascript was basically designed to add interactivity in HTML pages
and is directly embedded into HTML.

 Javascript is free to use by anyone.

 Javascript is interpreted language ie is not precompiled before
execution. As javascript is interpreted, it is platform independent.

 Java is a full fledged complex programming language developed by
sun microsystem. Javascript is developed by netscape
communications and is no sub language of java.

 Javascript is originally a scripting language developed by European
Computer Manufacturer‘s association (ECMA)

 Javascript that runs at the client side (ie at the client‘s browser) is client
side java script (CCJS) and javascript that runs at the server is
serverside java script (SSJS)

 Javascript being object oriented, uses number of built in javascript as
well as objects can be created.

 Every object has properties and methods. Property is value(s)
associated with an object. Methods are actions associated with an
object.

 Example:

<scripttype="text/javascript">

document.write("This message is written by JavaScript");
</script>

in above example, ‗document‘ is object and write() is a method of

document object.

 Javascript runs in a web browser, and when a script written by a third
party is executed on the browser, there is a risk of running a spyware
or a virus program.

 Hence, each time javascript is loaded on the browser implements a
security policy designed to minimise the risk of such unknown code.

 Security policy is set of rules governing what scripts can do under
which circumstances.

 Modern javascript security is based upon Java. Scripts downloaded are
isolated from the operating system and then executed. This is known
as the ‗sandbox‘ model. Some scripts are often stored randomly here
and there. And hence, many times obtain more power than expected
by design or by accident.

 Scripts in general are given limited access and more access is only
given with the user consent. Taking a consent for every execution is
not a practical solution.

 Scripts from ‗trusted‘ source are many times excluded from this
consent procedure.

 A policy called ‗same origin‘ does not block scripts coming
from the same origin as trusted scripts. This same origin
check is performed on all methods of windows object, also on
embedded and externally linked objects.

 JAVASCRIPT OPERATORS

Javascript Operators Example

JAVASCRIPT STATEMENTS

 JavaScript is a sequence of statements to be executed by the

browser. Browser executes the statements in the same order

as they are written.

 JavaScript is case sensitive with all syntax, variable and

function names.

 The semicolon at the end of line is optional (according to the

JavaScript standard), and the browser is supposed to interpret

the end of the line as the end of the statement. However,

semicolon at the end of line is good programming practice.

Also, it enables us to write multiple statements on the same

line.

 JavaScript statements can be grouped together in blocks.

Blocks start with a left curly bracket {, and end with a right curly

bracket }. The purpose of a block is to make the sequence of

statements execute together.

 A block is normally used to group the statements in a function

or condition.

 A general example of block is –

JavaScript Comments

 JavaScript comments can be used to make the code more readable.

 Comments can be added to explain the JavaScript.

 Comments can be added at end of a line.

 Single line comments start with //.

 Multi line comments start with /* and end with */.

 The comment is used to prevent the execution of a single code
line or a code block. This can be suitable for debugging

Following example demonstrates use of comments in javascript code.

Javascript Variables (Var statement)

 Variables are "containers" for storing information. This
information can be values or expressions.

 A variable can have a short name, like x, or a more descriptive
name, like MyName.

 Rules for JavaScript variable names:

o Variable names are case sensitive (y and Y are two
different variables)

o Variable names must begin with a letter or the
underscore character

 Creating variables in JavaScript is most often referred to as
"declaring" variables.

 You declare JavaScript variables with the var keyword like var x;

 After the declaration shown above, the variables are empty (they
have no values yet). However, you can also assign values to the
variables when you declare them like var x = 10; After the
execution of this statement, the variable x will hold the value 10

 A variable declared within a JavaScript function becomes LOCAL and can
only be accessed within that function. (the variable has local scope).

 You can have local variables with the same name in different
functions, because local variables are only recognized by the
function in which they are declared.

 Local variables are destroyed when you exit the function.

 Variables declared outside a function become GLOBAL, and all
scripts and functions on the web page can access it.

 Global variables are destroyed when you close the page.

 If you declare a variable, without using "var", the variable always
becomes GLOBAL.

 If you assign values to variables that have not yet been declared,
the variables will automatically be declared as global variables.

 All javascript operators can be used with variables

Example –

Conditional statements

Conditional statements are used to perform different actions based on

different conditions.In JavaScript we have the following conditional

statements:

1. If statement - This statement is used to execute some

code only if aspecified condition is true.

Syntax:

if(condition)

{

code to be executed if condition is true

}

2. If...else statement - This statement is used to execute some

codeif the condition is true and another code if the condition

is false

Syntax:

if (condition)

{

code to be executed if condition is true

}

else

{

code to be executed if condition is not true

}

3. If...else if....else statement - This statement is used to

select one ofmany blocks of code to be executed

Syntax:

if (condition1)

{

code to be executed if condition1 is true

}

else if (condition2)

{

code to be executed if condition2 is true

}

else

{

code to be executed if neither condition1
nor condition2 is true

}

Example

4. switch statement -This statement is another way to select

one of manyblocks of code to be executed.

Syntax -

switch(n)

{

case 1:

execute code block 1
break;

case 2:

execute code block 2
break;

default:

code to be executed if n is different from case 1
and 2

}

Example:

Loop statements

Loops execute a block of code a specified number of times, or while a

specified condition is true.

Often when you write code, you want the same block of code to run over and

over again in a row. Instead of adding several almost equal lines in a script we

can use loops to perform a task like this.

In JavaScript, there are two different kind of loops:

1. for - loops through a block of code a specified

number of times. It can be used only when it is

known in advance, how many times we have to

run the loop.

2. while - loops through a block of code while a
specified condition is true.

for Loop Syntax:

for (variable=startvalue;variable<=endvalue;variabl
e=variable+increment)

{

code to be executed

}

Example:

Javascript given below will print 5 numbers. Each time, value of the
variable is incremented by 1.

While loop syntax

while (var<=endvalue)

{

code to be executed

}

While loop can be used with any comparison operator.

Do Whileloop is a variation to the while loop. In this case block willbe

executed at least once, as the statements are executed before the

condition is tested. Syntax for do while is as follows –

do

{

code to be executed

}

while (var<=endvalue);

Consider the example where number is printed after incrementing it by 1. This

is performed while the number is less than or equal to

. Script and the outputs with while and do while loop are as given below –

<html>

<body>

<script type="text/javascript">

var i=6;

do

{

document.write("The number is " + i);
document.write("
"); i++;

}

while (i<=5);

</script>

</body>

</html>

Changes in script with just while loop and corresponding output --

while (i<=5)

{

document.write("The number is " + i);
document.write("
");

i++;

}

document.write(―value of i is printed outside the

loop‖); document.write(―
\‖ + i);

Break and Continue statement in javascript

 The break statement will break the loop and continue
executing the code that follows after the loop (if any).

 The continue statement will break the current loop and
continue with the next value.

Function

 Function is a segment of program that performs a given task.

 A function contains code that will be executed by an event or by a call to

the function.

 You may call a function from anywhere within a page (or even from other

pages if the function is embedded in an external javascript file).

 Functions can be defined both in the <head> and in the <body> section of

a document.

However, to assure that a function is read/loaded by the browser before it is called, it

should be put functions in the <head> section.

Syntax of the function is as follows –

functionfunctionname(var1,var2,...,varX)

{

some code

}

 Function always includes parenthesis after the name of function ‗()‘

 Function calls are case sensitive as javascript is case sensitive.

 The return statement is used to specify the value that is returned from the

function.

So, functions that are going to return a value must use the return
statement.

 If a variable is declared using "var", within a function, the variable can only

be accessed within that function.

 The variable is destroyed once function call is over. These variables are

called local variables. Local variables can have the same name in different

functions, because each is recognized only by the function in which it is

declared.

 If a variable is declared outside a function, all the functions on your page

can access it.

 The lifetime of these variables starts when they are declared, and ends

when the page is closed.

 Following is an example of function. Function products computes and

returns product of variables a and b.

 Basic advantage of using a function is reusability. Same task can be

performed again and again simply by calling the function which performs

the task.

Example:

CORE JAVASCRIPT

Data Types are classified as primitive data types and composite data types.

Composite Data types -

 Numbers - are values that can be processed and calculated. The

numbers can be either positive or negative. Javascript integer

can have three base values – 10 (decimal), 8(octal) or

16(hexadecimal). Number can be integer or floating point

number.

 Strings - are a series of letters and numbers enclosed in single or
double quotation marks. Strings are used for text to be displayed
or values to be passed along.

 Some characters that you may want in a string may not exist on
the keyboard, or may be special characters that can't appear as
themselves in a string.

 In order to put these characters in a string, you need to use an
escape sequence to represent the character. An escape
sequence is a character or numeric value representing a
character that is preceded by a backslash (\) to indicate that it is
a special character.

Some escaped characters are as follows:

 Escape

Sequence

Character

\b

\t

\n

\"

\'

\\

Backspace.

Tab. Tabs behave erratically on the Web and are best

avoided, but sometimes you need them.

New line (\u0000a). Inserts a line break at the point

specified. It is a combination of the carriage return (\r) and

the form feed (\f).

Double quote.

Single quote, or an apostrophe, such as in can\'t.

The backslash, since by itself it is a command.

 Boolean (true/false) - lets you evaluate whether a condition

meets or does not meet specified criteria.

 Null - is an empty value. null is not the same as 0 -- 0 is a real,

calculable number, whereas null is the absence of any value. An

empty string is distinct from null value.

 NAN – Some javascript functions return a special value called

not a number.

Primitive Data Types –

Object –

 An object is a collection of named values, called the properties of
that object. Functions associated with an object are referred to as
the methods of that object.

 Properties and methods of objects are referred to with a dot(.) notation

that starts with the name of the object and ends with the name of the

property. For instance image.src.

 Normally in objects there are only two nodes, the object and the
property, but sometimes the properties can have properties of
their own, creating an object tree.

 For instance, document.form1.namefield.

 Objects in JavaScript can be treated as associative arrays. This
means that image.src and image['src'] are equivalent.

 JavaScript has many predefined objects, such as a Date object
and a Math object. These are used much as function libraries are
used in a language like C.

 They contain a collection of useful methods that are predefined
and ready for use in any JavaScript code you may write.

Date Object –

 The Date object is used to work with dates and times.

 Date objects are created with new Date().

 There are four ways of instantiating a date:

var d = new Date();

var d = new Date(milliseconds);

var d = new Date(dateString);

var d = new Date(year, month, day, hours, minutes,

seconds, milliseconds);

 Some javascript predefined methods are –

 getDate() Returns the day of the month (from 1-31)

 getDay() Returns the day of the week (from 0-6)

 getFullYear() Returns the year (four digits)

 getHours() Returns the hour (from 0-23)

 getMilliseconds() Returns the milliseconds (from 0-999)

 getMinutes() Returns the minutes (from 0-59)

 getMonth() Returns the month (from 0-11)

 getSeconds() Returns the seconds (from 0-59)

 getTime() Returns the number of milliseconds

sincemidnight Jan 1, 1970

 getTimezoneOffset() Returns the time difference

betweenGMT and local time, in minutes

 getYear() Deprecated. Use the

 getFullYear() method instead

 parse() Parses a date string and returns the

number ofmilliseconds since midnight of January

1, 1970

 setDate() Sets the day of the month (from 1-31)

 setHours() Sets the hour (from 0-23)

 setMilliseconds() Sets the milliseconds (from 0-999)

 setMinutes() Set the minutes (from 0-59)

 setMonth() Sets the month (from 0-11)

 setSeconds() Sets the seconds (from 0-59)

 setTime() Sets a date and time by adding or

subtracting aspecified number of milliseconds to/from

midnight January 1, 1970

 toString() Converts a Date object to a string

 toTimeString() Converts the time portion of a Date

objectto a string

 toUTCString() Converts a Date object to a

string,according to universal time

 valueOf() Returns the primitive value of a Date object

Math object –

The Math object allows you to perform mathematical tasks.

The Math object includes several mathematical constants and methods.

 round() – rounds the number to nearest integer value.

 random() - returns a random number between 0 and 1.

 max() - returns the number with the highest value of two
specified numbers.

 min() - returns the number with the lowest value of two
specified numbers.

Array –

 An Array is an ordered collection of data values.

 In JavaScript, an array is just an object that has an index to refer

to its contents. In other words, the fields in the array are

numbered, and you can refer to the number position of the field.

 The array index is included in square brackets immediately after

the array name. In JavaScript, the array index starts with zero, so

the first element in an array would be arrayName[0], and the third

would be arrayName[2].

 JavaScript does not have multi-dimensional arrays, but you can

nest them, which is to say, an array element can contain another

array.

 You access them listing the array numbers starting for the

outmost array and working inward. Therefore, the third element

(position 2) of or inside the ninth element (position 8) would be

arrayName[8][2].

Document and associated objects

 Document

 Link

 Area

 Anchor

 Image

Events and Event Handlers

 General information about events

 Defining event handlers

Event
Types

 onAbort

 onBlur

 onChange

 onClick

 onDblClick

  onDragDrop

  onError

  onFocus

  onKeyDown

  onKeyPress

  onKeyUp

  onLoad

  onMouseDown

  onMouseMove

  onMouseOut

 onMouseOver

 onMouseUp

 onMove

 onReset

 onResize

 onSelect

 onSubmit

 onUnload

DOCUMENT AND ASSOCIATED OBJECTS

Document

 Each HTML document loaded into a browser window becomes a
Document object.

 The Document object provides access to all HTML elements in a
page, from within a script.

 The Document object is also part of the Window object, and can
be accessed through the ‗window.document‘ property.

 Document object is part of document object model.

 This model has a fixed hierarchy, where topmost object in the

hierarchy is Browser itself.

 After browser window object and inside window, as shown

below, comes the document object.

 Relation of document object to the window object can be

depicted in the fig given below –

|-> Document

|-> Anchor

|-> Link

|-> Images

|-> Tags

|-> Form

|-> Text-box

|-> Text Area

|-> Radio Button

|-> Check Box

|-> Select

|-> Button

The above figure shows Document Object and Window objectHierarchy in
Document Object

Document object has following properties and methods

Properties –

1. cookieReturns all name/value pairs of cookies in the document

2. documentModeReturns the mode used by the browser to

renderthe document

3. domain Returns the domain name of the server that loaded

thedocument

4. lastModifiedReturns the date and time the document was

lastmodified

5. readyStateReturns the (loading) status of the document

6. referrer Returns the URL of the document that loaded the

currentdocument

7. title Sets or returns the title of the document

8. URL Returns the full URL of the document

Methods –

1. close() Closes the output stream previously opened

withdocument.open()

2. getElementById() Accesses the first element with the specified id

3. getElementsByName() Accesses all elements with a

specifiedname

4. getElementsByTagName() Accesses all elements with a

specifiedtagname

5. open() Opens an output stream to collect the output

fromdocument.write() or document.writeln()

6. write() Writes HTML expressions or JavaScript code to

adocument
7. writeln() Same as write(), but adds a newline character after

eachstatement Yes

Following examples demonstrates use of some properties and
methods of document object.

Script and output Demonstrating write method and title

property of Document object.

 EVENTS AND EVENT HANDLERS

 What are events?

 Events are actions that can be detected by JavaScript.

 Every element on a web page has certain events which can
trigger a JavaScript.

 For example, we can use the onClick event of a button
element to indicate that a function will run when a user clicks
on the button.

Examples of events:

1. A mouse click
2. A web page or an image loading

3. Mousing over a hot spot on the web page
4. Selecting an input field in an HTML formoSubmitting an

HTML form

5. A keystroke

Events are normally used in combination with functions, and the

function will not be executed before the event occurs!

Defining event handlers

 They are JavaScript code that are not added inside the <script>
tags, but rather, inside the html tags, that execute JavaScript
when something happens, such as pressing a button, moving
your mouse over a link, submitting a form etc.

 The basic syntax of these event handlers is:

name_of_handler="JavaScript code here"

 For example:

<a href="http://google.com"
onClick="alert('hello!')">Google

 When events are associated with functions, the functions are

written in the head section within the <script> tag and are called

from the event handlers.

Example :

<html>

<body>

<h1 onclick="this.innerHTML='Welcome to

EventHandlers'">Click on this text</h1>

</body>

</html>

 EVENT

Following is the list of events used by various javascript objects and
when are these events triggered.

 Attribute The event occurs when...

 onabort Page is not finished loading

 onblur An element loses focus

 onchange The content of a field changes

 onclick Mouse clicks an object

ondblclic
k Mouse double-clicks an object

 ondragdrop A user drops an object

 onerror
An error occurs when loading a document
or

 an image

onfocu
s An element gets focus

 onkeydown A keyboard key is pressed

 onkeypress A keyboard key is pressed or held down

onkeyu
p A keyboard key is released

 onload A page or image is finished loading

onmousedow
n A mouse button is pressed

onmousemo
ve The mouse is moved

onmouseo
ut The mouse is moved off an element

 onmouseover The mouse is moved over an element

 onmouseup A mouse button is released

 onmove
The position of top left corner of an object
is

 moved.

onresiz
e A window or frame is resized

 onreset Reset button on the form is clicked.

onsele
ct Text is selected

 onsubmit Validate all form fields before submitting it.

 onunload The user exits the page

Following is an example which shows onmouseover event

to give different messages for different parts of an

imagemap.

Script to demonstrate onmouseover event and its event

handler

UNIT 7

XML

 Introduction to XML

. Anatomy of an XML Document

 Creating XML Documents

. XML DTDs

 XML Schemas

 XSL

 INTRODUCTION TO XML

XML (extensible Markup Language) is a meta-language; that is,

it is a language in which other languages are created. In XML, data

is "marked up" with tags, similar to HTML tags. In fact, the latest

version of HTML, called XHTML, is an XML-based language, which

means that XHTML follows the syntax rules of XML.

XML was designed to describe data. XML is used to store data

or information. This data might be intended to be by read by people

or by machines. It can be highly structured data such as data

typically stored indatabases or spreadsheets, or loosely structured

data, such as data stored in letters or manuals. XML tags are not

predefined in XML. You must define your own tags. XML uses a

DTD (Document Type Definition) to formally describe the data.

The main difference between XML and HTML

1. XML is not a replacement for HTML.

XML and HTML were designed with different goals:

a. XML was designed to describe data and to focus on
what data is.

b. HTML was designed to display data and to focus on
how data looks.

2. HTML is about displaying information, XML is about
describing information.

XML Benefits

When you write an HTML document, you see a nicely formatted

page in a browser - instant satisfaction. When you write an XML

document, you see an XML document (not the output)

1. XML Holds Data, Nothing More

XML does not really do much of anything. Rather, developers

can create XML-based languages that store data in a

structure way. Applications can then use this data to do any

number of things.

2. XML Separates Structure from Formatting

One of the difficulties with HTML documents, word processor

documents, spreadsheets, and other forms of documents is

that they mix structure with formatting. This makes it difficult

to manage content and design, because the two are mix

together.

In HTML, there is a <U> tag used for underlining text. It is

also used for emphasis, or to mark a unit title. It would be

very difficult to write an application that searches through

such a document for unit titles.

In XML, the book titles could be placed in <UNIT_TITLE>
tags and the emphasized text could be place in tags.

3. XML Promotes Data Sharing

Applications that hold data using different structures must
share data with one another. It can be very difficult for a
developer to map the different data structures to each other.
XML can solve this problem. Each application's data structure
is mapped to an agreed-upon XML structure. Then all the
applications share data in this XML format. Each application
only has to know two structures, its own and the XML
structure, to be able to share data with many other
applications.

4. XML is Human-Readable

XML documents are (or can be) read by people as data

stored in a database. It is not easy to browse through a

database and read different segments of it as you would a

text file. Given below is an XML document (person.xml):

<?XML version="1.0"?>

<PERSON>

<NAME>

<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

<JOB>Software Engineer</JOB>

<GENDER>Male</GENDER>

</PERSON>

Code Explanation

Above XML is describing a person named Raj Mehra, who is
a software engineer and is male.

5. XML is Free

XML doesn't cost anything to use. It can be written with a
simple text editor or one of the many freely available XML
authoring tools, such as XML Notepad. In addition, many web
development tools, such as Dreamweaver and Visual Studio
.NET have built-in XML support. There are also many free
XML parsers, such as Microsoft's MSXML (downloadable
from microsoft.com) and Xerces (downloadable at
apache.org).

.

 ANATOMY OF AN XML DOCUMENT

An XML document is made up of the following parts:

1. The Prolog (optional)

The prolog of an XML document can contain the following

items.

1. The XML Declaration

The XML declaration, if it appears at all, must appear on the

very first line of the document with no preceding white space.

It looks like this:

<?XML VERSION="1.0"

STANDALONE="yes"?>

ENCODING="UTF-8"

This declares that the document is an XML document. The

version attribute is required, but the encoding and standalone

attributes are not. If the XML document uses any markup

declarations that set defaults for attributes or declare entities

then standalone must be set to no.

2. Processing Instructions

Processing instructions are used to pass parameters to an

application. These parameters tell the application how to

process the XML document. For example, the following

processing instruction tells the application that it should

transform the XML document using the XSL stylesheet

artist.xsl

<?XML-STYLESHEETHREF="artist.xsl"

TYPE="text/xsl"?>

As shown above, processing instructions begin with and <?
end with ?>.

3. Comments

Comments can appear throughout an XML document. Like in
HTML, they begin with <!-- and end with -->.

<!--This is a comment-->

4. A Document Type Declaration

The Document Type Declaration (or DOCTYPE
Declaration) has three roles.

 It specifies the name of the document element.

 It may point to an external Document Type Definition (DTD).

 It may contain an internal DTD.

The DOCTYPE Declaration shown below simply states that
the document element of the XML document is artists.

<!DOCTYPE ARTISTS>

If a DOCTYPE Declaration points to an external DTD, it must

either specify that the DTD is on the same system as the

XML document itself using SYSTEM keyword or that it is in

some public location using PUBLIC keyword. It then points to

the location of the DTD using a relative Uniform Resource

Indicator (URI) or an absolute URI.

Syntax: <!--DTD is on the same system as the XML document-->

<!DOCTYPE ARTISTS SYSTEM "dtds/artists.dtd">

Syntax: <!--DTD is publicly available-->

<!DOCTYPE ARTISTS PUBLIC "-

//freespace//DTD artists 1.0//EN"

"http://www.freespace.com/artists/DTD/artists.

dtd" >

In the second declaration above, public identifiers are
divided into three parts:

1. An Organization (E.g., Freespace)

2. A Name for the DTD (E.g., Artists 1.0)

3. A Language (E.g., EN for English)

Prolog (optional)

XML Declaration

Document Type Definition
(DTD)

Comment

Processing Instructions

White Space

<?XML

VERSION="1.0"

ENCODING="UTF-8"

STANDALONE="no"?>

<!DOCTYPE

DOCUMENT SYSTEM

―tts.dtd">

<!-- Here is a comment -->

<?XML-STYLESHEET

TYPE="text/css"

HREF="myStyles.css"?>

2. The Document Element (usually containing nested elements)

 Document / Root Element

Every XML document must have at least one element, called

the document/root element. The document element usually

contains other elements, which contain other elements, and

so on. Elements are denoted with tags. Consider again

person.xml which we discussed earlier.

<?XML
VERSION="1.0"?><PER
SON>

<NAME>

<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

<JOB>Singer</JOB>

<GENDER>Male</GENDER>

</PERSON>

Code Explanation

The document / root element is PERSON. It contains three

elements: NAME, JOB and GENDER. Further, the NAME

element contains two elements of its own: FIRSTNAME and

LASTNAME. As you can see, XML elements are denoted

withtags, just as in HTML. Elements that are nested within

another element are said to be children of that element.

 Empty Elements

In XML all elements might not contain other elements or text.
E.g., in HTML, there is element / tag used to display

an image. It does not contain any text or elements / tags
within it, so it is called an empty element. In XML, empty
elements must be closed, but they do not require a separate
close tag. Instead, they can be closed with a forward slash at
the end of the open tag as shown below:

The above code is identical in function to the code
below:

Elements & Content
(required)

Root Element Opening Tag

Child Elements and Content

Root Element Closing Tag

<TTS><TT>

<name>XML </NAME>

<URL>http://www.myserver.com/xml/tt</URL>
</TT>

<TT><NAME>HTML </NAME>

<URL>http://www.myserver.com/html/tt</URL>
</TT>

</TTS>

 Attributes

XML elements can be further defined with attributes,
which appear inside of the element's open tag as
shown below:

<NAME TITLE="SoftwareEngineer">

<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

Here TITLE is an attribute of NAME element.

 CDATA

Sometimes it is necessary to include sections in an XML
document that should not be parsed by the XML parser.
These sections might contain content that will confuse
the XML parser, perhaps because it contains content that
appears to be XML, but is not meant to be interpreted as
XML. Such content must be nested in CDATA sections.
The syntax for CDATA sections is shown below:

<![CDATA[

This section will not get parsed by the XML parser.]]>

 White Space

In XML data, there are only four white space characters. They are:

1. Tab

2. Line-feed

3. Carriage-return

4. Single space

There are several important rules to remember with
regards to white space in XML:

1. White space within the content of an element is
important; that is, the XML processor will pass these
characters to the application or user agent.

2. White space in attributes is normalized; that is,
neighboring white spaces are reduced to a single
space.

3. White space in between elements is ignored.

XML Syntax Rules

XML has relatively straightforward, but very strict, syntax

rules. A document that follows these syntax rules is said

to be well-formed.

1. There must be one and only one document element.

2. Every open tag must be closed.

3. If an element is empty, it still must be closed.

o Poorly-formed: <TAG>

o Well-formed: <TAG></TAG>

o Also well-formed: <TAG />

4. Elements must be properly nested:

o Poorly-formed: <A>

o Well-formed: <A>

5. Tag and attribute names are case sensitive.

6. Attribute values must be enclosed in single or
double quotes.

 Special Characters

There are five special characters that cannot be included

in XML documents. These characters are replaced with

predefined entity references as shown in the table below:

Character

Entity Reference

 < <

 > >

 & &

 " "

 ' '

3. Comments or Processing Instructions (optional)

Comments can appear throughout an XML document.
Like in HTML, they begin with <!-- and end with -->.

<!--This is a comment-->

Processing instructions are used to pass parameters to an

application. These parameters tell the application how to

process the XML document. For example, the following

processing instruction tells the application that it should

transform the XML document using the XSL stylesheet

artist.xsl

 <?XML-STYLESHEET HREF="artist.xsl"

 TYPE="text/xsl"?>

As shown above, processing instructions begin with and
<? end

 with ?>.

CREATING XML DOCUMENTS

The following is relatively simple XML file describing the Artists:

contacts.xml

<?xml version="1.0" encoding="utf-8" ?>

<contacts>

<contact>

<name>Fred Flintstone </name>

<telephone>1234567823</telephone>

<mobile>567975977</mobile>

</contact>

<contact>

<name>Casper Ghost</name>

<telephone>5467823</telephone>

<mobile>98797785</mobile>

</contact>

<contact>

<name>Jughead</name>

<telephone>46565577</telephone>

<mobile>785454232</mobile>

</contact>

</contacts>

Code Explanation

In above document root element is contacts. Contacts

element has one child element contact. Contact also has one child

element name, telephone and mobile.

9.4. XML DTDs

A Document Type Definition (DTD) is a type of schema. The

purpose of DTDs is to provide a framework for validating XML

documents. By defining a structure that XML documents must

conform to, DTDs allow different organizations to create shareable

data files.

Well-formed vs. Valid

1. A well-formed XML document is one that follows the syntax rules
described in "XML Syntax Rules".

2. A valid XML document is one that conforms to a specified structure.

3. For an XML document to be validated, it must be checked
against a schema (document that defines the structure for a
class of XML documents).

4. XML documents that are not intended to conform to a schema
can be well-formed, but they cannot be valid.

Creating DTDs

DTDs are simple text files that can be created with any basic text

editor. A DTD outlines what elements can be in an XML document

and the attributes and sub-elements that they can take. Let's start by

taking a look at a complete DTD and then dissecting it.

contacts.dtd

<!ELEMENTcontacts (contact+)>

<!ELEMENTcontact (NAME)>

<!ELEMENTcontact(telephone)>

<!ELEMENT FIRSTNAME

(#PCDATA)><!ELEMENT LASTNAME

(#PCDATA)>

The Document Element

When creating a DTD, the first step is to define the document element.

<!ELEMENTcontacts (contact+)>

The element declaration above states that the contacts element
must contain one or more contact elements.

Child Elements

When defining child elements in DTDs, you can specify how many

times those elements can appear by adding a modifier after the

element name. If no modifier is added, the element must appear

once and only once. The other options are shown in the table below:

Modifier Description

? Zero or One Times.

+One or More Times.

*Zero or More Times.

Other Elements

The other elements are declared in the same way as the

document element - with the <!ELEMENT> declaration. The

ARTISTS DTD declares three additional elements.

Choice of Elements

It is also possible to indicate that one of several elements

may appear as a child element. E.g., the declaration below indicates

that an IMG element may have a child element NAME or a child

element ID, but not both.

<!ELEMENT IMG (NAME|ID)>

Empty Elements

Empty elements are declared as follows.

<!ELEMENT IMG EMPTY>

Mixed Content

Sometimes elements can have elements and text mixed.

E.g., the following declaration is for a BODY element that may

contain text in addition to any number of LINK and IMG elements.

<!ELEMENT BODY (#PCDATA | LINK | IMG)*>

Location of Modifier

The location of modifiers in a declaration is important. If the

modifier is outside of a set of parentheses, it applies to the group;

whereas, if the modifier is immediately next to an element name, it

applies only to that element.

The following examples illustrate:

<!ELEMENT BODY (LINK* | IMG*)>

the BODY element can have any number of child LINK and

IMG elements, but they must come in pairs, with the LINK

element preceding the IMG element

<!ELEMENT BODY (LINK, IMG)*>

the BODY element can have any number of child LINK and

IMG elements, but they must come in pairs, with the LINK

element preceding the IMG element

<!ELEMENT body (link*, img*)>

the BODY element can have any number of child LINK
elements followed by any number of child IMG elements

Using Parentheses for Complex Declarations

Element declarations can be more complex than the

examples above. E.g., you can specify that a PERSON element

either contains a single NAME element or a FIRSTNAME and

LASTNAME element. To group elements, put them in parentheses

as shown below:

<!ELEMENT PERSON (NAME | (FIRSTNAME, LASTNAME))>

Declaring Attributes

Attributes are declared using the <!ATTLIST> declaration. The
syntax is shown below:

<!ATTLISTElementName

AttributeNameAttributeType State
DefaultValue?AttributeNameAttributeType
State DefaultValue?>

 ElementName is the name of the element taking the attributes.

 AttributeName is the name of the attribute.

 AttributeType is the type of data that the attribute value may
hold. Although there are many types, the most common are
CDATA (unparsed character data) and ID (a unique
identifier). A list of options can also be given for the attribute
type.

 DefaultValue is the value of the attribute if it is not included in
the element.

 State can be one of three values: #REQUIRED,
#FIXED (set value), and #IMPLIED (optional).

Validating an XML Document with a DTD

The DOCTYPE declaration in an XML document specifies the DTD

to which it should conform. In the code sample below, the

DOCTYPE declaration indicates the file should be validated against

artists.dtd in the same directory. Add below line in Artists.xml after

declaration:

<!DOCTYPEcontacts SYSTEM "contacts.dtd">

Below is the example how to work with internal and external DTD:

Internal DTD

<?XML VERSION="1.0"?>

<!DOCTYPE NOTE [

<!ELEMENT NOTE

(TO, FROM, HEADING, BODY)>

<!ELEMENT
TO

(#PCDATA)>

<!ELEMENT
FROM

(#PCDATA)>

<!ELEMENT HEADING (#PCDATA)>

<!ELEMENT
BODY

(#PCDATA)>

]>

<NOTE>

<TO>Amar</TO>

<FROM>Ajit</FROM>

<HEADING>Reminder</HEADING>

<BODY>Don't forget to read this</BODY>

</NOTE>

External DTD

This is the same XML document with an external DTD:

<?XML VERSION="1.0"?>

<!DOCTYPE NOTE SYSTEM "note.dtd">

<NOTE>

<TO>Amar</TO>

<FROM>Ajit</FROM>

<HEADING>Reminder</HEADING>

<BODY>Don't forget to read this</BODY>

</NOTE>

This is a copy of the file "note.dtd" containing the Document
Type Definition:

<?XML VERSION="1.0"?>

<!ELEMENT NOTE (TO, FROM, HEADING, BODY)>

<!ELEMENT TO (#PCDATA)>

<!ELEMENT FROM (#PCDATA)>

<!ELEMENT HEADING (#PCDATA)>

<!ELEMENT BODY (#PCDATA)>

9.5. XML SCHEMAS

It is an XML-based language used to create XML-based

languages and data models. It defines element and attribute names

for a class of XML documents. It specifies the structure that those

documents must adhere to and the type of content that each

element can hold.

Why need XML Schema / Limitations of DTDs

 DTDs do not have built-in data types.

 DTDs do not support user-derived data types.

 DTDs allow only limited control over cardinality (the
number of occurrences of an element within its parent).

 DTDs do not support Namespaces or any simple way of
reusing or importing other schemas.

Schema Elements

Schema authors can define their own types or use the built-in

types. The following is a high-level overview of Schema types.

Elements can be of simple type or complex type.

1) Simple Type

a) These elements can only contain text. They cannot have child
elements or attributes.

b) All the built-in types are simple types (E.g., XS:STRING).

c) Schema authors can derive simple types by restricting

another simple type. E.g., an email type could be derived by

limiting a string to a specific pattern (that includes ‗@‘, ‗.‘, ‗_‘,

etc.)

d) Simple types can be atomic (E.g., strings and integers) or
non-atomic (E.g., lists).

2) Complex Type

a) These elements can contain child elements and attributes as
well as text.

b) By default, complex-type elements have child elements.

c) These elements can only contain text. But they are different
from simple type elements in that they have attributes.

d) These elements can be empty, but they have may have attributes.

e) These elements may have mixed content - a combination of
text and child elements.

Simple XML Schema – Student.xsd

The code below shows a valid

 <?XML VERSION="1.0"
XML instance of this XML
schema

 ENCODING="UTF-8"?> – student1.xml

 <XS:SCHEMA <?XML VERSION="1.0"?>

XMLNS:XS="http://www.w3.org/2001
/ <STUDENT

 XMLSchema"> XMLNS:XSI="http://www.w3.org/

 <XS:ELEMENT NAME="Student"> 2001/XMLSchema-instance"

 <XS:COMPLEXTYPE> XSI:NONAMESPACESCHEMAL

 <XS:SEQUENCE> OCATION="Student.xsd">

 <XS:ELEMENT
<FIRSTNAME>Sumit</FIRSTN
A

NAME="FirstName"
TYPE="xs:string" ME>

 /> <LASTNAME>Tiwari</LASTNA

 <XS:ELEMENT ME>

 NAME="LastName" TYPE="xs:string" </STUDENT>

 />

 </XS:SEQUENCE>

 </XS:COMPLEXTYPE>

 </XS:ELEMENT>

 </XS:SCHEMA>

Code
Explanation: Code Explanation:

An XML schema is an XML
document This is a simple XML document.

and must be well formed (i.e. follow
all Its document element is

 the syntax rules of XML document). STUDENT, which contains two

 XML schemas also have to follow the
child elements: FIRSTNAME
and

 rules defined in the "Schema of LASTNAME, just as the

schemas," which defines, among
other

associated XML schema
requires.

things, the structure of an element
and The XMLNS:XSI attribute of the

 attribute names in an XML schema. document element indicates that

 It is a common practice to use the XS
this XML document is an
instance

 qualifier to identify Schema elements
of an XML schema. The
document

 and types. is tied to a specific XML schema

The document element of XML
schemas with the

 is XS:SCHEMA. It takes the attribute XSI:NONAMESPACESCHEMAL

 XMLNS:XS with the value of OCATION attribute.

http://www.w3.org/2001/XMLSchema
,

 indicating that the document should

 follow the rules of XML Schema.

 In this XML schema, we see a

 XS:ELEMENT element within the

 XS:SCHEMA element. XS:ELEMENT

is used to define an element. In this
case

it defines the element STUDENT as
a

complex type element, which
contains a

 sequence of two elements:

 FIRSTNAME and LASTNAME, both

 of which are of the simple string type.

 XSL

HTML pages use predefined tags, and the meaning of these tags is

well understood: <P> means a paragraph and <H1> means a

header, and the browser knows how to display these pages.

With XML we can use any tags we want and the meaning of these

tags are not automatically understood by the browser: <TABLE>

could mean a HTML table or maybe a piece of furniture. Because of

the nature of XML, there is no standard way to display an XML

document.

In order to display XML documents, it is necessary to have a

mechanism to describe how the document should be displayed. One

of these mechanisms is Cascading Style Sheets (CSS), but XSL

(eXtensibleStylesheet Language) is the preferred style sheet

language of XML, andXSL is far more sophisticated than the CSS

used by HTML. XSL consists of two parts:

 a method for transforming XML documents (XSLT)

 a method for formatting XML documents (XSL-FO)

XSL is a language that can transform XML into HTML, a language

that can filter and sort XML data and a language that can format

XML data, based on the data value, like displaying negative

numbers in red.

XSLT

An XSLT looks at an XML document as a collection of nodes
of the following types:

a. Root node

b. Element nodes

c. Attribute nodes

d. Text nodes

e. Processing instruction nodes

f. Comment nodes

An XSLT document contains one or more templates, which are
created with the

<XSL:TEMPLATE /> tag. The XSLT processor reads through the
XML document starting at the root, progressing from top to
bottom.

 Example – artists.xsl Code Explanation

 <?XML VERSION="1.0"?> Document begins with an XML

 <XSL:STYLESHEET VERSION="1.0" declaration. As with all XML

 XMLNS:XSL="http://www.w3.org/1999/ documents, the XML declaration

 XSL/Transform"> is optional.

 <XSL:OUTPUT METHOD="html"/> The second line is the document

 <XSL:TEMPLATE
element of the XSLT. It states
that

 MATCH="child::ARTIST"> this document is a version 1.0

<HTML>

<HEAD>

<TITLE>

<XSL:VALUE-OF

SELECT="descendant::FIRSTNAME"

/><XSL:TEXT></XSL:TEXT><XSL:

VALUE-OF

SELECT="descendant::LASTNAME"
/></TITLE>

</HEAD>

<BODY>

<TABLE BORDER="1"
WIDTH="200"><TR><TD>

<XSL:VALUE-OF

SELECT="descendant::FIRSTNAME"
/>

<XSL:TEXT></XSL:TEXT>
<XSL:VALUE-OF

SELECT="descendant::LASTNAME"
/>

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

</XSL:TEMPLATE>

</XSL:STYLESHEET>

XSLT document.

<XSL:STYLESHEET

VERSION="1.0"

XMLNS:XSL="http://www.w3.or

g/1999/XSL/Transform">

The third line indicates that the resulting
output will be HTML.

<XSL:OUTPUT METHOD="html"/>

The fourth line is an open
<XSL:TEMPLATE> element. The MATCH
attribute of this tag takes an XPath, which
indicates that this template applies to the
ARTIST node of the XML document.
Because ARTIST is the document element
of the source document, this template will
only run once.

There are then a few lines of HTML tags
followed by two <XSL:VALUE-OF />
elements separated by one <XSL:TEXT>
element. The <XSL:VALUE-OF /> tag has
a SELECT attribute, which takes an XPath
pointing to a specific element or group of
elements within the XML document. In this
case, the two <XSL:VALUE-OF /> tags
point to FIRSTNAME and LASTNAME
elements, indicating that they should be
output in the title of the HTML page. The
<XSL:TEXT> element is used to create a
space between the FIRSTNAME and the
LASTNAME elements.

<XSL:VALUE-OF

SELECT="descendant::FIRSTNA

ME" />

<XSL:TEXT></XSL:TEXT>

<XSL:VALUE-OF

SELECT="descendant::LASTNAM

E" />

There are then some more

HTML tags followed by the

same XSLT tags, re-outputting

the FIRSTNAME and

LASTNAME of the Beatle in

the body of the HTML page.

After creating artists.xsl place it in the same directory as of artists.xml.

Also insert the following line in artists.xml after declaration:

<?XML-STYLESHEET HREF="artists.xsl" TYPE="text/xsl"?>

Save artists.xml and open it in browser. You will be able to find the
output in tabular format as shown below:

UNIT 8

WEBDESIGN CONCEPT

How the website should be

Basic rules of Web Page design Types of Website

What Is Good Web Design?

Before you read about the process of building Web pages, this section helps you

define your goal clearly. What, exactly, is good Web design? Some people discuss what

isn’t good Web design (www.webpagesthatsuck.com), but this really doesn‘t demonstrate

how to create good Web sites. Others like to discuss aesthetics and layout. Looks aren‘t

everything. Function is important, too, and some people even claim that the answer to what

constitutes good Web design is purely a matter of function. If it isn‘t usable, then it isn‘t

reasonable—but function without motivating form is boring. Consider whether economically

successful or trendy Web pages are well designed. Characterizing good Web design is not

easy, especially because it depends largely on your target audience. Most Web discussions

lose sight of the big picture, placing too much emphasis on how pages look, and not enough

emphasis on their content, purpose, functionality, or the user‘s experience. Web design is

not just graphic design. Web design

includesgraphic design. Other important aspects of the Webdesign process may

include such areas as the following:

_ Artistic style, color theory, typography, and other visual concerns

_ Information design, which specifies how information should be organized and linked

_ Hypertext theory _ Technical writing _ System design _ Programming

_ Network and server design

_ Business issues and project management

Many disciplines are part of Web design. The first requirement, however, is a clear

understanding of the site‘s ultimate purpose. The goal of a Web designer is to produce a

usable and appealing visual design for a software system, in the form of a Web site that

helps a user fulfill some goal. In other words, the goal is to develop a site that can be

delivered to the user in a satisfactory manner, be interpreted correctly by the user, and

induce the desired outcome. Web design should be concerned not only with the aesthetic

qualities of a Web site, but also with the user‘s overall experience in the context of a specific

task or problem. The focus is on how something can be done, not just on how it looks. It is

easy to throw out expressions like ―perception is reality‖ or ―content is king‖ as arguments

for or against focusing on the visual nature of the Web. However, the reality is a balance

between these extreme points of view. If you skimp on graphics, the site may seem boring.

If you provide a wonderful interface, but skimp on content, the user may leave to find a site

with more information. If you forget to debug, you may send the user away, facing error

dialog boxes. Remember: experience is important. Always consider what feeling the user

will take away after visiting your site. A sense of

accomplishment?Frustration?Understanding?Disgust? The best approach to Web design is

a holistic one, in which content, presentation, and interactivity work in harmony. So, how

can you make aWeb site that is both functional and visually appealing, without exceeding

the constraints of the Internet and Web technologies?

10 Rules of Web Design

Follow these guidelines to create great websites

1. Simple is beautiful.

Cramming too much into each page creates confusion. Visitors get frustrated when

they have to scan through rows of links and images to find what they are looking for.

By keeping your pages simple, your website will be easier to use.

2. Design is paramount.

When you meet someone for the first time, you want to make a good first

impression. The same should be true for your website. The overall look and feel of

your site is the first thing your visitors will notice.

3. Navigation should be intuitive.

There are few things more frustrating than not being able to find what you want on a

website. Pages should be well-organized with a top-down design so that visitors can

easily browse through the different sections of your site.

4. Consistency is key.

Visitors shouldn't feel like they are visiting a new website each time they open a new

page on your site. Consistent design across the pages within your site makes

navigation a much easier task.

5. Colors are crucial.

Color selection can make or break a website. Most of us have visited websites that

are simply painful to look at. When choosing colors, use a consistent palette of

colors that don't clash and make sure there is a strong contrast between the text and

the background.

6. Make your website responsive.

People will access your website using a wide variety of devices – from smartphones

to desktop computers. Therefore, it is important that your website displays correctly

on different screen sizes. CSS media queries are a great way to implement

responsive web design.

7. Develop for multiple browsers.

Browsers are supposed to render webpages the same way, but they don't.

Therefore, make sure to check your website in multiple browsers to make sure

everything appears correctly. It is best to catch problems ahead of time instead of

relying on complaints from your visitors.

8. Check your website for errors.

As any experienced editor will tell you, a great piece of work can be tarnished by a

small error. If you're a webmaster, check your websites on a regular basis for typos,

broken links, and images that do not load correctly.

9. Write your own code.

Whether it's HTML or PHP, nothing beats writing your code from scratch. If you build

your site from templates and pre-written scripts, you will be clueless when something

goes wrong. When you code your own pages, you have full control over how they

look and act.

10. Don't forget the content.

Even if your site is beautifully designed, it is only an empty shell without content. A

good website has both great design and great content. Therefore, make sure your

pages have unique, original content that makes them worth visiting.

Types of websites

There are three website types:

Content (information)

E-Commerce (online sales)

Interaction (Blogs, Bulletin Boards, Chat Rooms, and gaming sites).

Website types are implemented as dynamic or static:

Dynamic websites have frequently changing content or interact with the visitor. Dynamic

websites typically use server side programming to generate HTML code as requested.

Static websites are written in pure HTML perhaps with a bit of JavaScript and only change

when manually updated.

It's common to see combinations of the three types as well as combinations of

dynamic and static. It's important to understand what they are are and what works for you!

Content or information websites may be dynamic or static and the implementation

depends upon how frequently the website information changes. News sites and search

engines are dynamicdatabase driven websites to allow rapid information update. Many

corporate websites are static but that is changing rapidly.

E-commerce sites are almost always dynamic allowing for frequent product changes,

pricing changes, sales and inventory updates. Simple e-commerce transactions like

membership applications and online payment may be interactive while the main website is

still static.

Interaction sites (Blogs, Bulletin Boards, Chat Rooms, and gaming sites) are

dynamic.

Websites can be a combination of Content, E-Commerce and Interactive as well as a

combination of dynamic and static. It's common to see a combination of dynamic and static

implementations and combination of types. Because of this, more website owners are

moving toward dynamic pages.

Pictures and graphics are always good to liven up a website. You should have at

least some because the phrase "one picture is worth a thousand words" is as true now as

when it was coined.





Reference:

HTML Black Book

https://sharpened.com/web_design_rules

