Programming Expertise
InC

Student Reference Book

Contents

Lecture 1: C Programming Introduction

e WhyC

e Constants, Variables and Keywords

e Rules for building variables and constants

e Keywords in C

¢ In-memory view of a variable

Lecture 2: The First C Program

e Adding comments fo a program

e Creating a simple C program

e The general form of printf()

Lecture 3: C Instructions Part I

e Editors, Compilers, Linkers, Preprocessor, etc.
e Using Integrated Development Environment
e Editing commands

Lecture 4: C Instructions Part Il

e Type declaration instructions

¢ Arithmetic instructions

e Associativity

e Numbering systems

e Escape sequences

Lecture 5: Control Instructions Part I

e Control instructions

e Decision control instructions

Lecture 6: Control Instructions Part IT

e The sizeof() operator

e Relational operators

e The if-else statement

Lecture 7: More Decision Control Instructions Part I
e Logical operators

e Usage of logical operators

e Hierarchy of operators

Lecture 8: More Decision Control Instructions Part IT

¢ Conditional operators

01

05

09

13

19

23

27

31

Lecture 9: Conversions

e Conversions from one numbering system to another

e ASCII codes

e Printing graphics characters

Lecture 10: While loop I

e Repetition control instructions

e Incrementation & Decrementation operators
Lecture 11: While loop II

e Pre & Post incrementation/decrementation
e Loop control instructions

e The while loop

Lecture 12: For loop

e The for loop

e Differences between while and for loops
Lecture 13: DoWhile loop

e Multiple initializations in the for statement
e Multiple incrementations in the for statement
¢ Implement the do — while loop

¢ Difference between for, while and do-while loops
e Use of break and continue statements
Lecture 14: Switch

¢ How to use switch-case control instruction
Lecture 15: Menu

¢ Menu driven programming

e Function definition

e Function declaration

¢ Function calls

Lecture 16: Functions

e Passing values to the functions

¢ Returning a value from the function
Lecture 17: Advanced Features

¢ Returning non-integer values from the functions
¢ Pointers

e Printing address of variables

i

39

43

47

51

55

63

67

Lecture 18: Pointers

e Address of operator (&)

e Value at the address operator (*)

e Accessing VDU memory using pointers

Lecture 19: More Pointers I

e Accesses VDU memory directly

e Playing sound

Lecture 20: More Pointers II

e Toggle keys

¢ Switching On & Off Caps lock programmatically
e Restart computer without physically depressing Ctrl + Alt keys
Lecture 21: Near Far

e Difference between far and near pointer.

e Size of far and near pointer.

e Segment:Offset addressing scheme

Lecture 22: Far Huge

¢ Huge pointers

¢ Finding the size of base memory

Lecture 23: Call By Value & Reference

e The difference between call by value and call by reference
e How to return more than one value from a function
Lecture 24: Recursion

e Recursion

e Find Factorial Value Using Recursion

Lecture 25: Data Types

e Data types, size and range

e The type of ints, float and char data types
Lecture 26: Storage Classes

e The storage classes

e Automatic storage class

e Register storage class

e Static storage class

e External storage class

Lecture 27: Preprocessor I

¢ Compiling and linking of a program

il

71

75

77

79

83

85

89

93

97

101

e A preprocessor

e Types of preprocessor directives

e Preprocessor directives and their use
e Macros

¢ Difference between macro templates and macro expansion
Lecture 28: PreProcessor II

e Macros with arguments

¢ Condition compilation

e Miscellaneous preprocessor directives
Lecture 29: Arrays

e Arrays

e Declare and initialize array

Lecture 30: Sorting

e Sorting techniques

Lecture 31: 2D Arrays I

e Accessing array using pointers

¢ Pointers and arithmetic operations

e Passing array-elements to a function
e Passing entire array to a function
Lecture 32: 2D Arrays I1

¢ In-memory organization of an array
e 2-Dimensional arrays

¢ Pointers and multidimensional array
Lecture 33: Application of Arrays I

e (Create 2-D arrays

e Representing elements of 1-D and multidimensional array using pointer
Lecture 34: Application of Arrays II

¢ Obtaining scan codes of keys

e Creafing a 3-D array

e A puzzle game

Lecture 35: Strings I

e Strings

e Creating strings

¢ Handling multiword string

¢ Difference between printf() and puts()
v

105

109

113

115

119

123

125

129

Lecture 36: Strings IT

¢ Finding length of a string

e Copying one string to another

e Concatenation of strings

e Converting string from lower to uppercase
e Usage of standard library string functions
Lecture 37: Strings ITT

e Const pointers

e Need of const pointers

e 2-D array of characters

e Creating array of pointers to strings
Lecture 38: Calender

e Creating a monthly calendar

Lecture 39: Structures I

e Structures

e Access elements of a structure

e Array of structures

Lecture 40: Structures IT

e Nested structures

e Passing elements of a structure to a function
e Passing structure to a function

e Returning structure from a function
Lecture 41: Data Structures I

¢ Disadvantages of arrays

¢ Disadvantages of static memory allocation
e Allocating memory dynamically

e Implementing a linked list

Lecture 42: Data Structures IT

e Stack

e Implementing stack as linked list

Lecture 43: Disk I

e Organization of a Floppy disk and Hard disk
¢ Reading contents of boot sector

e Boot Parameters

133

137

141

145

149

153

157

161

Lecture 44: Disk IT

e Read aDisk

e Viral Infected Disk

e Anti Viral Solution

Lecture 45: Directory

e The directory structure

¢ Reading directory sectors

e Date and time of a file in directory structure

¢ File Attributes

¢ Loading and saving of a file

Lecture 46: Console I/'O

¢ Console I/O functions

¢ Difference between formatted and unformatted Console I/O
Lecture 47: File /O 1

e Disk I/O operations

¢ Buffered I/O

¢ Read a file and displaying its contents

e Using typedef

Lecture 48: File I/O II

e Writing data to a file

e Copying contents of one file to another

¢ Encoding and Decoding of file contents

Lecture 49: More File I/O I

¢ Program remove blank lines from a file

e To read and write records from/to the file

e Various file opening modes

e Difference between text mode and binary mode file I/O
Lecture 50: More File I/0 I1

e To recover data from a virus infected file

e To change an internal DOS command called DIR

e To perform low-level Disk /O

Lecture 51: Miscellany

e Introduction to Enumerations, Structures and Unions
e Bitwise operators

e The utility of << (Left-Shift) and >> (Right-Shift) operators

vi

165

167

171

175

179

183

187

191

Lecture 52: Bitwise Operators

e The utility of & (Bitwise AND) operator

e To change attributes of a file using bitwise operators
e To create function pointers

Lecture 53: Hardware Interaction I

e Ways to interact with hardware

e Hardware interaction, DOS perspective

e Hardware interaction, Windows perspective
e Ports, CMOS

e Accessing CMOS data

Lecture 54: Hardware Interaction IT

e Serial communication using null modem

¢ Communication with parallel port programmatically
e Working of Speaker

e Playing tunes using ports

Lecture S5:Windows I

e Advantages of Windows Programming model over DOS model
Lecture 56: Windows II

e Creating a window

Lecture 57: Windows III

¢ Event Driven Programming Model

e To create and display a real world window
Lecture 58: Windows IV

e Device Context

e Graphics under Window

Lecture 59: Windows V

e Freehand drawing using mouse

e To Capture Mouse

e To displaying Bitmap

e Animation

Lecture 60: Linux

e Infroduction to Linux

e C programming under Linux

e Parent and Child Processes

e Communication using Signals

vii

195

199

205

211

215

217

223

227

233

Programming Expertise In C C Programming Introduction 1

C Programming Introduction

In this lecture you will understand:

Why one should learn C

What is meant by constants, variables and keywords
Rules for building variables and constants

How many keywords are there in C

What happens in memory when a variable is created

2 C Programming Introduction Programming Expertise In C

Why C?
There are at least four good reasons to learn C:
(@ Cissimple.
(b) Cis easy to understand since it is extremely small and contains only 32 keywords.
(c) Programs written in C execute faster than the programs written in most other languages.
(d) Languages like C++, C# or Java use C syntax.
(e) Operating System like Unix, Linux or Windows are written in C.
(f) Moreover, gaming frameworks and even mobile devices use C.

(9) Communication with the hardware is easily possible using C, which was earlier possible only
using assembly language.

Where C Stands

Languages can be categorized as Low-Level Languages (LLL) and High-Level Languages (HLL).
The LLLs (Assembly Languages) offer better machine efficiency since they understand the machine
better and are able to exploit its capabilities more effectively. Also, these languages have all the
features and instructions to interact with the hardware. The HLLs offer better programming efficiency
since they have been designed to make programming easier. Moreover, all high-level languages don’t
have facilities and instructions to interact with the hardware. C is a good mix of both. Being a high-
level language it offers better efficiency as well as has all the features to interact with the hardware.
Hence, C is also called a Middle-Level Language.

In The Beginning...

Learning C language is similar to learning English language. Instead of words and numbers of
English, in C we build constants, variables and keywords. These in turn are used to form a
statement or an instruction. A group of such instructions forms a program.

Alphabets, Digits, Special Symbols

Let us begin our study of C with the alphabets, digits and special symbols that it permits us to use.
Alphabets include the uppercase alphabets (A - Z) and lowercase alphabets (a - z). Digits include the
digits (0 - 9). In addition to these, C permits use of 32 special symbols like +, <, >, (,), {, }» %, ", &,
*, etc.

Constants and Variables

Constants are the entities that don’t change, whereas, variables are entities that can change. In the
slide 3, 2, and 20 are constants as they are themselves values and hence cannot be changed. On the
other hand x and y are variables as their values can be changed.

C Constants

There are two types of constants viz. Primary and Secondary. Each of them further contains several
types as shown in the slide. In this lecture we would focus our attention only on Primary constants.

Programming Expertise In C C Programming Introduction 3

Integer Constants

Integer constants are numbers without decimal point or fractional part in them. While building an
integer constant the rules shown in the slide should be followed. The valid range of integer constants
is —32768 to 32768. If we are to program an application which needs to tackle constants
bigger/smaller than the range offered by integer constant we should use real constants.

Real Constants
The real constant must contain a decimal point. It can be positive or negative. No comma or spaces
are allowed and the valid range is -3.4 x 10% to +3.4 x 10%,

Forms of Real Constants

There are two ways to represent real constants viz. Fractional and Exponential form. Of these the
fractional form is more popularly used. The exponential form is used to represent very small or very
large real constants. The exponential form has the following format:

mantissa >gxponent
Or

mantissa Uxponent

Character Constants

Character constants are the constants enclosed within single quotes pointed to left. Character
constants are single character wide. More than one character is not allowed within single quotes.

C Variables

All computer languages follow one cardinal rule: A particular type of constant can be stored in the
same type of variable. Hence those many types of variables exist, as the number of types of constants.

Variables

Since variables are containers that hold constants in them the number of types of variables must be
the same as the number of types of constants.

It is necessary to identify the types of variables so that the computer can decide what value and
operations can be allowed on that variable.

What Happens in Memory

Like human memory, computer’s memory also consists of millions of cells. When we say x = 3, one
of these cells get chosen, a value 3 gets stored in it and a name X is given to that cell. Here onwards
whenever we use X, the value stored under this location will get used.

How to Identify Types

Though 3, 3.0 and ‘3 are value-wise same C treats them as different types of constants. Looking at
the constant we can easily identify its type. The slide shows their types. However, the same cannot be
said about the variables.

We cannot identify the types of variables by simply looking at them. So in C, we need to declare or
define the variables before using them, for example:

int a

float b

char ¢

4 C Programming Introduction Programming Expertise In C

Rules for Building Variable Names

While building variable names the rules mentioned in the slide should be followed. Since C is case-
sensitive language, variables written in lowercase are different than the ones in uppercase. Also
notice the difference between the minus sign ‘-* and the underscore “_’. Although variable name can
contain digits and underscores, the first character of the variable name must be an alphabet.

C Keywords

In C there are 32 keywords. Keywords are words having predefined meaning in the language. For
example, when we say int i it means that we are trying to define i to be an integer type. In this
statement, int is a keyword and its meaning stands predefined. The terms Keywords and Reserved
words are used interchangeably. int, char and float are keywords. The keywords should never be
used as variable names. So, the statement int float is invalid.

However, integer, character and real are not keywords. Hence they cannot be used to declare variable
types and can be used as variable names.

Programming Expertise In C The First C Program

The First C Program

In this lecture you will understand:

* What is a comment and how to add the same
* How to create a simple C program
* The general form of printf()

6 The First C Program Programming Expertise In C

Where Do We Stand

This slide shows what we have learnt so far. In the first step, we saw what are alphabets, digits and
special symbols in C’s point of view. Then we learnt what are constants, variables and keywords and
saw how to form C statements and instructions.

By combining instructions or statements we can create a program. How, we will see in the next slide.

The First C Program

Here we intend to calculate the simple interest for 1000.50 as the principal amount, 3 as the number
of years and 15.5% per annum. In the slide we have taken variable p for principal amount, n for years
and r for rate of inferest and si for simple interest. We have stored the respective values in these
variables and then calculated the interest amount using the arithmetic statement si = p * n * r /100.
To let the compiler know what type of data we are going to store in these variables we must declare
them at the beginning of the program. Since p and r are storing real values they are declared as float.
Since n is holding an integer value it is declared to be of the type int. The simple interest may be a
real number. Hence si has also been declared as float.

If variables are of same type we can declare them in one statement separating hem by comma (.).

Printing Values...

This slide shows memory locations containing the values 1000.50, 3 and 15.5. These memory
locations are identified by the names p. n and r. When we calculate simple interest its value would be
stored in another location and a name si would be given to it. However, just storing the value in
memory location is not enough. This value should get printed on the screen. This printing is done
using printf(). The %f enclosed within double quotes forms the format string. %f indicates that we
are trying to print a float value.

In C, () are called parenthesis, { } are called braces and [] are called square brackets. They have
different meanings. So you should familiarize yourselves with the name of each.

General Form of printf()

The general form of printf() is shown in the slide. The format string can contain format specifiers,
which specify the type of the value to be printed. Here we should use %i for printing integer, %f for
printing float and %c for printing character.

The variable list contains a list of variables whose values we wish to print. The variables in the list
should be separated using commas. There should be a one-to-one correspondence between the
variables in the list and the format specifiers in the format string.

Any character other than format specifiers in the format string is printed as it is. We can also write the
printf() statement as follows:

printf (“p = %f, n = %i, r = %f, si = %f, p, n, r,si)
Here the output would be
p=1000.5,n=3,r=155, si = 465.2325

Statement Terminators

The way all English sentences end with a full-stop (.).all C statements end with a semicolon (3).
Because of such syntax, we can write multiple statements in one line. This makes C a free form
language.

Programming Expertise In C The First C Program 7

What To Execute

Instead of instructing the machine to execute first the float declaration, then the int declaration, and

so on, C permits us to give a collective name to the set of statements in a program. This collective
name is main().

To indicate how many statements belong to main() the statements must be enclosed within a pair of
braces. The pair of braces is called scope delimiters. Execution of a program in C starts from main().

Comments Are Useful

A comment is as a note or a remark. It is a good practice to mention a comment at the beginning of
the program indicating the purpose of the program. The comment must be enclosed within /* */.

Note that a comment is given only for our understanding and the computer always ignores it during

execution of the program. Hence we can write English sentences in comments in capital or small
case.

Tips About Comments

We can add comments anywhere in the program. Using /* */ we can comment out multiple lines.
Nested comments are not allowed i.e. a comment should not be written inside another comment.

A More General Program

If we execute the simple interest program we would always get the same value of si, since the values
of p. n and r are fixed. If we wish to calculate si for some other set of values we would have to make

a change in the program. This should never happen. Our program should be general and flexible
enough to work for any type of data.

If we are to write a general program then we should receive the values of p, n and r from the user
through keyboard when program is running using the scanf() statement as shown in the slide.

The general form of scanf() is similar to printf() except that the variables in the list are preceded by
the ‘Address Of" (&)operator. The actual purpose of & operator would be discussed later.

One More Program

The slide shows one more program that accepts three integers and calculates the average. The average
is then printed on the screen using printf().

Programming Expertise In C C Instructions Part—1 9

C Instructions Part-1

In this lecture you will understand:

* What are editors, compilers, linkers, preprocessor, efc.

* What do we mean by Integrated Development Environment
* Various editing commands

10

C Instructions Part - 1 Programming Expertise In C

C Compilers

Various compiler manufacturers have designed different types of C Compilers, which offers better
development environment called Integrated Development Environment that provides easy debugging,
compiling and execution of programs. The slide lists various C Compilers.

Integrated Development Environment

An Integrated Development Environment consists of:

(@)
(b)
(©
(d)
(©

Editor
Compiler
Preprocessor
Linker
Debugger

Editor helps to type or edit program. Editor provides easy editing commands so that writing programs
becomes easy.

Compiler is a translator, which translates a C language program to machine language program, which
a processor can understand.

A preprocessor is used to include different files in one file and expand macros if any in the program.

A linker is used to link the function calls from the program with the library that contains the
function body.

A debugger is used to search for bugs (problems) in the code.

Editing Commands

Editing commands consists of some Cursor movement and Deletion commands.

Cursor movement keys consists of

(@)

(®)
(©
(d
(e)
®
(2
()
@

Arrow Keys

— Up Arrow — moves cursor fo one line up

— Down Arrow — moves cursor fo one line down
— Right Arrow — moves cursor to one place right
— Left Arrow — moves cursor to one place left

Home — moves cursor to the beginning of the line

End — move cursor to the end of the line

PgUp (Page Up) — moves cursor to the beginning of the previous page
PgDn (Page Down) — moves cursor to the beginning of the next page
Ctrl+Home — moves cursor to the beginning of the screen

Ctrl+End — moves cursor to the end of the screen

Ctrl+PgUp — moves cursor to the beginning of the file

Ctrl+PgDn — moves cursor to the end of the file

Deletion Commands consists of

(a)

Del — to delete a character

Programming Expertise In C C Instructions Part—1 11

(b) Backspace — to delete a character left to the cursor
(c) Cul+T — to delete a word (Place cursor to the beginning of the word to be deleted)
(d) Ctl+Y —to delete a line (Place cursor on the line to be deleted)

Some More Commands
File Menu consists of some Opening and Closing file commands,
(a) New — to open a new file
(b) Save — to save the file
(c) Save as — to save the file with different name
(d) Open— to open an existing file
(e) Exit— to quit out of the Integrated Development Environment (IDE)
(f) DOS Shell — to temporarily exit IDE and to execute DOS commands
Miscellaneous Commands
(a) F2—to save the current file
(b) Ctul+F9 — to compile and execute the program
(c) AIt+FS5 — to view the output
(d) AIt+F3 —to close the current window or file

Always give relevant names to program so that they can be easily identified with their names.

Interchanging Contents of Two Variables

In this slide we are attempting to write a program to interchange the contents of two variables.
Initially we have declared two variables ¢ and d. We have taken the input through the scanf()
statement. Assume that 5 and 10 are entered through the keyboard for ¢ and d. Now to interchange
values, ¢ is assigned the value of d (¢’s original value has been lost forever) hence ¢ and d both
contains value 10. Again the value of c is assigned to d hence no change in d, ¢ and d still remains as
10 and 10.

Hence when printed using printf() statement the values of ¢ and d are printed as 10 and 10 and it is
confirmed that values are not interchanged yet.

Interchanging Contents of Two Variables

This slide shows the same program with few modifications. Another temporary integer variable t is
declared, which initially doesn’t contain anything.

Firstly the value of ¢ is assigned to t, then the value of d is assigned to ¢. Here ¢ will loose its original
value. But that value is stored in t. Since d should contain that we have assigned the value of t fo d.
Now the values have been interchanged. You can trace these assignments in the slide.

One More Way

The slide shows one more way to interchange the values of the variables, which do not use third
variable t. The program accepts the values of ¢ and d, add them and store in ¢, subtract d from ¢ and
store it in d (which is value of ¢) again, subtract d from ¢ again and store it in ¢ (which is value of d).
Finally the values have been interchanged.

12 C Instructions Part - 1 Programming Expertise In C

Sum of Digits

Now we intend to calculate the sum of individual digits of a number. Consider a number 26913. The
sum of individual digits: 2. 6, 9. 1, and 3 needs to be calculated. In the program shown in the slide the
number is taken in n using scanfy().

To separate the individual digits of a number we need to apply the Modulus (%) operator on the
number and use 10 as the divisor. This would give us the last digit of the number because Modulus
returns the remainder. If we use Division (/) operator with 10 then we would get the number except
the last digit. This would be required to extract the second last digit and then subsequent digits.

The Whole Picture

Once the number is accepted from the user and stored in n, firstly we have extracted the last digit of
the number and stored it in d5. We have the reduced the number by dividing by 10. Suppose the
number is 26913. The number would now become 2691. This number has been stored in n again.
Hence now n would contain a new number i.e 2691. Since second last digit has now become the last
one we have applied the modulus operator on this number again. This extracted the last digit again.
We have stored it in d4. Likewise we have extracted the digits 3 more times and stored them in d3,
d2 and d1. We have then added the values of d1. d2, d3, d4 and d5 to obtain the sum of individual
digits and stored the answer in s. Finally the sum is printed through printf().

Is % (modulus) Really Useful

The modulus (%) operator is used in various applications shown in the slide.

In case of leap year, year has to be divided by 4 and if the remainder is zero then year is considered as
leap year.

Also to find odd or even number, if a number on division by 2 results into 0, then it is even, otherwise
odd.

In case of prime number too, we need to divide and check the remainder, if it is O then the number
cannot be prime and if there is no factor until one less than the number, the number is prime.

Programming Expertise In C C Instructions part —II 13

C Instructions Part - 11

In this lecture you will understand:

What are type declaration instructions
Various arithmetic instructions

What do we mean by associativity

How many numbering systems can be used
Various escape sequences and their usage

* % ¥ ¥ W

14 C Instructions Part — 11 Programming Expertise In C

Where Are We...

We have seen simple example of how to define variables. Now we will see more ways to define
variables. Then we will see types of arithmetic instructions, input/output instructions and control
instructions.

Type Declaration Instruction

Variables in C should be declared using type declaration statement. This has been discussed while
writing the first program. The type declaration statements consist of two things, one the type and
second the list of variable names separated through commas.

Initialization can also be done at the time of declaration. In the slide the declaration statement int a ;
and assignment statement a = 5 ; is grouped together as int a = 5 ;. First declaration would be done
and then 5 would be assigned to a.

Also, more than one variable can be declared as well as initialized in one type declaration statement
as follows:

inta=5b=10;

An expression can also be used to assign the answer to the variable being declared, which is as
follows:

inta=5b=10,c=a+b*5%2;

But for this the variables used in the expression must be declared prior to the variable to which the
expression is used. Hence the order of declaration is important and the order is left to right.

We can assign multiple variables in the single statement. For example,

int a,b,c,d;
a=b=c=d=5;

For this to work all the variables must be declared prior to assignment. Hence this works but the
following statement doesn’t:

inta=b=c=d=5;

Arithmetic Instruction

Having understood the type declaration instructions, we now move on to Arithmetic Instructions.
Arithmetic Instructions are used while calculating a value. Arithmetic instructions use the arithmetic
operators shown in the slide. In C there is no exponentiation operator. To calculate power we can use
pow() function for which we need to add #include ”math.h” before main().

The left hand side of the assignment operator must always be a variable. It cannot be a constant or an
expression. This is because expressions get evaluated to constants.

Unlike algebra, in C, in arithmetic statements no operator is assumed, for example:
a=b(c+d):

Here b is being multiplied by (¢ + d), hence * is necessary.

Types of Arithmetic Instruction

There are three types of Arithmetic Instructions as shown in the slide. When all operands are integers
it is called integer mode arithmetic operation. When all operands are real it is called real mode
arithmetic operation. When some operands are integers and some real then it is called mixed mode
arithmetic operation.

Programming Expertise In C C Instructions part —II 15

In the example shown in the slide a, b, and ¢ are declared as int. Hence the result of the arithmetic
instruction evaluates to an integer value.

The first set of operators shown in the slide refer that they are arithmetic operators. The second
indicates an assignment operator. The third is the statement terminator. The fourth group indicates
that ¢, a, b are variables, whereas, 5, 6, 14 are constants and can be used as operands for the
operators.

Legal Arithmetic Operations

The slides shows what would be result if operands are either only integers or only reals or both.

Try This

It is important to know that if an arithmetic operation were a mixed mode operation then it would
always be carried out in the type that is more powerful. Between int and float, float is more
powerful. Also, if it were a real mode arithmetic operation the result would be in real mode. Suppose
some evaluation gives 5.5 as a result. If this result were initialized fo an integer variable the number
would be truncated to 5, means only the integer part would get stored.

In the left half of the slide, that variable a has been declared as int hence all the results of the
statements are only integer values. Even when mixed mode arithmetic operation is performed the
result is int itself.

In the right half of the slide, a has been declared as float hence real values get stored in a.

Which is Correct

The result of the first expression in the slide is 0 since both 5 and 9 are integers. Hence, in the next
statement 9 is changed to 9.0, which is a real constant and hence the expression becomes mixed mode
operation, which would always be done in real mode. The parenthesized expression is evaluated first.
Hence, parenthesis must be given for the part of expression, which is to be evaluated first. So, in the
last statement the expression (f — 32) is evaluated first.

Hierarchy/Priority/Precedence

Similar to algebraic BODMAS rule, which specifies the order of operations to be performed, C has
also some rules of operator evaluation called hierarchy or priority or precedence of operators. In the
slide the numbers indicates the order of arithmetic operations. The arrow in the figure moves from the
operator at the lowest level hierarchy to highest-level hierarchy.

Associativity

Consider the expression given in the slide. Here there is a tie between operators of same priority, that
is between / and *. This tie is settled using the associativity of / and *. But both enjoy Left to Right
associativity. The slide shows for each operator which operand is unambiguous and which is not.

Since both / and * have L to R associativity and only / has unambiguous left operand (necessary
condition for L to R associativity) it is performed earlier.

Associativity

Consider one more expression given in the slide. Here both assignmetnt operators have the same
priority and same associativity (Right to Left). The slide shows for each operator which operand is
unambiguous and which is not. Since both = have R to L associativity and only the second = has
unambiguous right operand (necessary condition for R to L associativity) the second = is preferred
earlier.

16 C Instructions Part — 11 Programming Expertise In C

Input/Output Functions

This slide revises the syntax of printf() and scanf() that we have seen earlier. For output we use the
printf() statement and for input we use the scanf() statement.

printf()
The general format of printf() consists of two things viz., the format string and list of variables.

The list of variables is optional, whereas, the format string consists of any message, format specifiers
and escape sequences.

The variables in the list of variables must be separated with commas. Also, the number of variables in
the list must be equal to the number of format specifiers in the format string.

Numbering Systems

In the slide four Number Systems are explained. In Decimal number system, 10 symbols (0 — 9) can
be used to form a decimal number. In Octal, 8 symbols (0 — 7) can be used to form an octal number.
In Hexadecimal, 16 symbols (0 —9, A — F) can be used to form a hexadecimal number. C allows us to
use any of the three while using a constant. Binary is not allowed in C. But all the numbers ultimately
get converted to binary before they are actually processed by the processor.

Conversions

The slide shows how to convert from hexadecimal to decimal and octal to decimal. To convert from
hexadecimal to decimal we need to multiply each digit of the number with base of the system i.e 16
raise to n, where n is the place of the digit. The right-most digit has a place 0. The second right-most
digit has 1 and so on. Likewise, to convert an octal to decimal we need to multiple each digit of the
number with 8 (base) raise to place number. Lastly, the results of all multiplications need to be added
fo obtain the decimal number.

The slide also shows conversion from decimal to binary, hexadecimal to binary and octal to binary.
To convert to binary we have fo divide the number with its base. The division must go on until it
becomes 0 and store the remainder in each step. Then starting from the bottom all the remainders
should be combined to form the actual binary number.

printf() Makes it Handy

If we want to print the hexadecimal and octal equivalent of a decimal number we can write the
following statement:

printf ("%d %o %x %X", 10, 10, 10,10) ;

Here we have used %d, %o0. %x and %X format specifiers to print the decimal, octal and
hexadecimal equivalent of decimal 10. The difference between %x and %X is that %X would print
the characters (A-F) in hex number in capital, whereas, %x would print in small case.

To represent an octal constant we need to write 0 (zero) before the number. For example, 077. To
represent a hexadecimal constant we need to add 0x or 0X before the number. For example 0xA.
0XA.

Note, that real constants cannot be converted to hexadecimal or octal equivalents using %o and %x.

Escape Sequences

Escape sequences are non-printable character constants having more than one character within single
quotes. The °\" is used as escape character to be understood by the C compiler that the character
followed by °\’ represents non-printable character such as newline (“\n’), tab (“\t’), etc. The newline

Programming Expertise In C C Instructions part —II 17

takes the cursor to the beginning of the next line. The tab character takes the cursor to the next tab
character on the screen.

Any Other Characters

The slide shows what all a printf() statement can contain.

scanf()

The scanf() statement have similar format as that of printf() except the variables in list of variables
precede with ampersand (&), which specifies the address of variables where the values accepted
through the keyboard to be stored. As shown in the slide, an input for octal and hexadecimal variables
can be supplied as 022 and Oabc, as well as 22 and abc respectively.

Programming Expertise In C Decision Control Instructions Part —I 19

Decision Control Instructions
Part-1

In this lecture you will understand:

* What are control instructions
* What are decision control instructions

20 Decision Control Instructions Part —I Programming Expertise In C

C Instructions

The first two types of instructions were covered in the last lecture. In this lecture we wish to explore
the Control Instructions.

Control Instructions

Control Instructions control the sequence of execution of instructions in a program. The different
types of control instructions are:

(a) Sequence
(b) Decision
(c) Repetition
(d) Case

Normal C Program

Unless explicitly specified the instructions in a program get executed one after the other, or
sequentially. All programs that we have developed so far used the Sequence control instruction. This
in fact is the default control instruction.

Decision Control Instruction

Let’s now take a look at the Decision Control Instruction. Suppose we intend to calculate the total
expenses incurred on purchasing a quantity for a particular price. We wish to offer a 10 % discount if
the quantity purchased is more than or equal to 1000. So we cannot calculate total expenses unless we
check whether the quantity supplied is more than 1000 or not. And to check this we need to use a
Decision control instruction. The usage of this instruction is shown in the next slide.

Slide Number 5

The quantity accepted through the scanf() statement in qty is checked using the if statement. The if
statement always includes a condition within the pair of parenthesis. Here it is checked whether the
value of qty is greater than 1000 or not. If the value of qty is found to be greater than 1000 then the
dis, which represents discount, is assigned the value 10, else dis is assigned the value 0.

Here the operator >= checks whether the left-side value is greater than or equal to the right-side
value. This operator is called relation operator.

Next, we have calculated the total expense and displayed it.

Tips

The if and else are keywords. The general form of if-else is shown in the slide.
For building the condition we can use the following relational operators:

(a) <Less than

(b) > Greater than

(c) <=Less than or equal to

(d) >= Greater than or equal to

(e) = Relational equal to

(f) !'=Notequal to

Programming Expertise In C Decision Control Instructions Part —I 21

While comparing two entities for equality we need to use = (relational equal to), whereas, for
assigning one entity to another we need to use = (assignment operator).

Note that relational operators always evaluate to either 1 or 0. If the condition is true then it evaluates
to 1 otherwise fo 0.

Would This Work

We are allowed to use expressions in printf(). The expression can be an arithmetic expression like a
+ b or a conditional expression like a <=b. On evaluating a conditional expression it is replaced by 1
if it evaluates fo truth and by 0 if it evaluates to false.

Is it Monday or Tuesday

Until a variable is initialized with some value, it holds a garbage value. A garbage value is any
unpredictable value that is present in the memory cell when that cell gets reserved for a variable. In
the slide, since we have not initialised a with any value a garbage value gets printed.

Slide Number 9

In this program, we have initialised dis with 0 at the time of declaration. If the quantity entered by the
user is greater than 1000, we have assigned 10 to dis otherwise we have directly calculated the total
expense, with dis equal to 0. Conclusion is writing else block is optional.

Slide Number 10

In this program, in the if-else block, we want that three statements should get executed. However, out
of three statements, only the first statement after if and else belong to them. The second and third
statements after if are treated as normal statements that are not belonging fo if. So, on compiling this
program we would get an error saying ‘misplaced else’. This error occurs if the compiler finds an else
block without an if block.

Slide Number 11

The error “misplaced else’ can be removed by enclosing the statements in pair of braces. We have
done the same in this slide.

One More Form
The slide shows the general form of if-else block when multiple statements are to be executed in
them.

Leap Year or Not

Let’s now try a program fo determine whether a year is leap or not. It is wrong to believe that if the
year is divisible by 4 it is leap, otherwise not. The correct logic to find out whether the year is leap or
not is as follows:

(a) A century year divisible by 400.
(b) A non-century year divisible by 4.

Slide Number 14

In the slide firstly we have checked whether the year is a century year or not using the condition y %
100 == 0. If the year is a century year we have checked whether it is divisible by 400. If the year is a
non-century year then we have checked whether it is divisible by 4.

Programming Expertise In C Decision Control Instructions Part — II 23

Decision Control Instructions
Part-11

In this lecture you will understand:

The working of sizeof() operator
What are relational operators

How to create a program. to find out whether the year is leap or not

*
*
*
* The working of if-else statement

24 Decision Control Instructions Part - IT Programming Expertise In C

First Day of Any Year

Having dealt with the logic to determine a leap year, we now attempt fo find the first day (Monday,
Tuesday...) of any year. In this slide we have accepted the year.

The Logic Behind It

1/1/1, i.e. 1st January; 1 was Monday according to the Gregorian calendar. To find out the day on
29/1/1 we need to carry out three steps:

(1) Find out the number of days that have passed from 1/1/1 to a day prior to 29/1/1, i.e. upto 28/1/1.
(2) Divide this number of days by 7.

(3) If the remainder is 0, then coming day, i.e. 29/1/1 is Monday. If remainder is 1, then 29/1/1 is
Tuesday and so on.

Slide Number 3

The logic discussed for 29/1/1 in the previous slide can be extended to find out the day on first day of
the year entered through the keyboard. Suppose the year entered through the keyboard is 1998, we
need to find out the number of days that have passed from 1/1/1 to 31/12/1997.

This calculation has been split into two parts:

(a) The normaldays variable accounts for 365 days that occurred in every year from year 1 to year
1997.

(b) The leapdays variable accounts for one extra day that occurred in every leap year from year 1 to
year 1997.

Summation of the two would give total number of days between 1/1/1 and 31/12/1997. Once this has
been obtained, modulus by 7 is carried out. If the remainder turns out to be 0 then 1/1/1998 is
Monday, if it is 1 then 1/1/1998 is Tuesday and so on.

Syntax error occurs when there is a grammatical error in the syntax of the statement. For instance in
the example,

printf (“%d, 23) ;

the quotation marks are not completed, hence a Syntax error. Semantic errors are logical errors, like
in the example if (a =2), we wish to check if a contains value 2, however, here instead of comparing
the values, 2 would get assigned to a as = is used in place of ==.

Slide Number 4

The expression (y - 1) * 365 may yield a value greater than the range of an int. Hence to store such
value we need to define normaldays and totdays as long int. The long int is a data type that has
range of —2147483648 to 2147483647.

What’s Wrong Here?

Just declaring normaldays and totdays as long ints is not enough. This is because (y - 1) * 365
operation is being carried out in integer mode as y is an integer variable and 1 & 365 are integer
constants. If the whole operation were in integer the result would also be in integer. Hence even
normaldays is declared as long int the result that would be assigned is integer. There are two
solutions to it. Either make 1 or 365 as long int constant by writing 1L or 365L or define y as long
int. Doing either of this would make (y - 1) * 365 a mixed mode operation.

To print or take long int as input we need to specify %ld as the format specifier.

Programming Expertise In C Decision Control Instructions Part — II 25

The sizeof() Operator

The sizeof() is an operator in C. It gives the size of a variable or a type in bytes. Every int variable
occupies 2 bytes and every long int variable occupies 4 bytes in memory. The sizeof is also a
keyword.

Are You Sure

The upper half part of the slide shows arithmetic statements. While doing modulus division the
remainder would always take the sign of the numerator.

In the lower half of the slide execution of conditional statement would give ‘Hi’ as output. First a ==
b is compared, which results in 1. Then 1 is compared with the value of ¢, which results in 0. Hence
the else block gets executed.

Programming Expertise in C More Decision Control Instructions Part—1

27

More Decision Control
Instructions Part-1

In this lecture you will understand:

*

*
*
*

What are logical operators
When to use logical operators
How logical operators work
Hierarchy of operators

28 More Decision Control Instructions Part - 1 Programming Expertise in C

What Will Be The Output

The output of the program shown in the slide is 30. Carefully observe the if statement. It is
terminated by semicolon. The statement b = 30 ; doesn’t belong to the if block even if it is supposed
to. The semicolon after the if statement forms the null statement, which is executed when the
condition is true. Since b = 30 ; lies outside the if block it is executed irrespective of whether the
condition is true or false.

What Will Be The Output

In the program shown in the slide we have used = in the condition written in if statement. Being
assignment operator value 5 gets assigned to a. Then if (a) is executed. The value 5 is non-zero and
so, the condition is treaded as true. Note that not only 1 any non-zero (including a negative number)
value in C is treated as true and zero as false. Hence the output of the program is Hi.

Slide Number 3

This program uses nested if-else statements. Its working is easy to understand but it has three
problems:

(a) The indentation of the statements will increase with the number of conditions
(b) Needs care for matching ifs and elses
(c) Braces should be matched

Slide Number 4

The problems mentioned in the previous slide seem to have been avoided in this program. But if you
look carefully there are a lot of other problems.

Suppose percentage marks turns out to be 70. For this value the first three conditions turn out to be
true. Hence the student ends up passing in all three divisions. Something that is totally wrong.

Slide Number 5

In this program we have combined conditions using a ‘logical AND’ operator (&&). When combined
using && the expression is considered to be true only if both the conditions turn out to be true.
However, there is still a minor flaw here. If the student gets 70 percent marks then the condition if (
per >= 40 && per < 50) fails. As a result, control goes to the else block and prints out fail. This is
wrong. It can be rectified by explicitly writing all conditions as shown in the next slide.

Slide Number 6

Finally, all the problems have been solved. So is this a better program as compared to the one that
used nested if-elses? Yes and no. Yes because the three problems of indentation, too many if-else to
be matched and too many { } to be matched have been avoided.

However, the performance suffers. If the first condition gets satisfied the rest of the conditions still
get unnecessarily checked. This consumes time thereby degrading the performance.

One More Way

The solution shown in the slide would work the best.

Programming Expertise in C More Decision Control Instructions Part—1 29

Logical Operators

The &&, ||, and ! are logical operators. Here && is Logical AND, || is Logical OR and ! is Logical
NOT operators. They are generally used for checking ranges and for yes/no problems. yes/no
problem are problems, which on evaluating a complicated set of conditions ultimately result into true
or false. For example, after checking several conditions if the result is either the student has passed or
failed then this becomes a yes/no problem.

Slide Number 9

The program determines whether a person should be insured or not. It accepts age, sex and martial
status of a person. The criteria for insuring a person are:

(a) If the person is married

(b) If the person is unmarried, is male and is above 30 years of age
(c) If the person is unmarried, is female and is above 25 years of age
(d) In all other cases the person is not insured.

The program checks these conditions in the same order and reports whether the person should be
insured or not.

Note that the user of the program has to enter m for male, f for female and m for married marital
status, u for unmarried marital status.

Using Logical Operators

This slide shows the previous program using logical operators. First we have checked the marital
status using the condition ms == ‘m’. This condition is combined with other conditions using ||.
Hence if this condifion is evaluated to true then other conditions would not be checked and this is
what we wanted. If this condition evaluates to false then the next condition where we have checked
for unmarried marital status and male and above 30 years of age would be evaluated. If this evaluates
to false then the last condition would be checked. If all conditions evaluate to false then else block
would be executed otherwise the if block would be executed.

Working of && And ||

The working of the logical operators && and || are given in the slide.
(a) The output of && is true if both the operands are true, otherwise false.
(b) The output of || is false if both the operands are false. otherwise true.

Hierarchy of Operators

The slide shows hierarchy of all the operators that we have used so far. The unary operators have a
higher priority over the binary operators. Unary operators need only one operand, whereas. a binary
operator needs two operands.

Consider the expression
a=-3+b-5;

Here the unary operator —3 has the highest priority, the + and — that follows in the expression after —3
has the second and third priority (L to R). The & operator used in the scanf() statement has the
higher priority as it is a unary operator. Other unary operators that can be used in an expression are
also shown in the slide.

Programming Expertise in C More Decision Control Instructions Part — II 31

More Decision Control
Instructions Part-11

In this lecture you will understand:

* What are conditional operators
* How are they different?

32 More Decision Control Instructions Part — II Programming Expertise in C

Exchanging Blocks

The if or else block can be exchanged by reversing the condition in the if which is shown in the slide.

One More Way

One more way of reversing the condition is by using ‘not’ (!)operator. How to use this operator is
shown in the slide. But the condition given in the slide would not work properly and wrong output i.e.
B would get displayed. This is because, since the ! operator enjoys highest priority firstly !a would
get evaluated resulting into 0 (not of non-zero value is zero). which is then compared with 4.

The Correct Way

The program has been modified, by putting the condition in the pair of parenthesis. Now firstly a>b
is checked and then the result of this condition gets negated.

Yet Another Way

Another way of writinga>bis!(a<=b).

What Would be The Output

We know that logical operators always evaluate to either true or false. Hence applying Logical NOT
fo a variable would result in either true if the value of the variable is zero and to false if the value of
the variable is non-zero. Since true in C is 1 and false is 0 if we print the result we would either get 1
or 0.

Point Out The Error

When you execute the program given in the slide you will get an ‘Lvalue Required’ error message for
the statement ¢ = 'a || b = 7 ;. Here because of higher priority of || with respect to = (equal to). !a || b
would be executed before b = 7. The result of !a || b may turn out to be 1 or 0. And 7 cannot be
assigned to either of them, hence the error.

In the printf() statement shown in a block in the slide, the terminating quotes of the format string are
missing as a result, compiler flashes error as 'Unterminated string or character constant'.

What Would Be The Output

The statement causing error in the previous slide can be modified as shown in this slide. The
parentheses are used for giving higher priority for the assignment operation.

Yet Another Way

The program given in the first half of the slide simply checks whether a is less than or equal to b and
prints A or B accordingly. This program can also be done using conditional operators.

The ? and : are conditional operators. These are used as a replacement of if-else. Their general form
is:

condition ? statement] : statement2

If the condition gets satisfied then statement] gets executed and if the condition turns out to be false
the statement2 gets executed.

However, while using ? : more than one statement cannot be given in the true or false part of the
conditional operators.

Programming Expertise in C More Decision Control Instructions Part— I 33

How Would You Convert

If the : and the statement following it are dropped it would result into an error.

Remove The Error

We may attempt to rectify the error by writing a null statement after the colon. However, the error
doesn’t vanish because now the semicolon acts as a terminator.

No Errors At Last

If we put one more semicolon believing that it would act as the null statement the error still persists,
because first semicolon acts as a terminator and second semicolon acts as a null statement.

This problem can be resolved putting some dummy statement as shown in the slide. These do not
serve any useful purpose except for possibly satisfying the ego of the conditional operators.

Moral of The Story
A few tips...

— Ifwe use ? we must use :. They always go hand in hand.

— Inthe ? and : there must at least be one statement. A dummy statement would also do.

— Itis not a replacement of the if-else statement as only single statements are allowed in the ? and :
parts.

Some More Different Ways

Some more forms of the conditional operator are shown in the slide. In the first form parentheses are
necessary otherwise the error ‘Lvalue Required’ would be flashed because of operator precedence.

The second form shows that ? : can be used for assigning the value evaluated through the conditional
operator.

They can also be used in printf() statement as shown in the slide.

Programming Expertise in C

Conversions

339

Conversions

In this lecture you will understand:

* How to convert from one numbering system to another
* How to print graphics characters

36 Conversions Programming Expertise in C

Conversions

In this slide we will see simple examples of int to float conversions. The first printf() prints the
values of variables as expected.

In the second printf(). float variable d is printed with %d which is an integer format specification.
Since float to int conversion is unpredictable it prints correct values for a, b and ¢ but prints 0 for d.

In the third printf() the integer a is printed using %f. This produces a wrong output. Since the first
conversion goes wrong it messes all the conversions of subsequent variables. Hence this time
printf() would print unpredictable output for a as well as all the subsequent variables..

Conversions Continued...

Let us now see conversion between an int and char. The first printf() uses the usual format
specifiers for int and char and prints the expected output.

In the second printf() the int variables i and j are printed using %c. This outputs A and Z.
If the char variables ch and dh are printed with %d format specifier the output is 65 and 90.

This indicates that there is some relation between 65 and A and 90 and Z. In the next few slides we
would try to understand this relationship.

Representation

Let us now see how an int, char and fleat are stored in memory. Each gets converted to its binary
equivalent and then stored in memory. Conversion of int or float to binary is done through
division/multiplication by 2. However, such division/multiplication would not be possible on the
character ‘A’. Hence ASCII values (American Standard Code for Information Interchange) are used
for storing a character.

From the slide it can be noted that binary equivalent for the number 65 and binary representation of
character ‘A’, whose ASCII value is 65, are same.

Methods Are Different

Consider the binary representation of 65 and ‘A’. Though their binary representations are same they
are obtained differently. 65 is converted by carrying out repeated divisions by 2 and writing
remainders in reverse order. As against this, binary of A is represented using the ASCII code. When
we print i using %c we are asking it to print character equivalent of the values stored in i. This turns
out to be “A’. Similarly, when we ask it to print ch using %d we are asking it to print decimal
equivalent of the value stored in ch. This turns out to be 65.

What About More Than 255

If int variables are printed using %c (character format specification) then only the binary
representation of the lower byte is used for the character conversion as shown in the slide. Hence if
we print 300 using %c character equivalent of 00101100 would get printed.

Why Unreliable Conversions

As we have seen earlier float to int or float to char conversions are unreliable. Let us now
understand why this is so. When a float variable is declared, 4 bytes get reserved in memory and
binary representation of floating point value is stored. Now when printed through %c only the value
present in lower 1 byte gets printed since char is of 1 byte. Similarly, when printed using %d the
value present in lower 2 bytes gets printed since int is of 2 bytes. Hence the unreliable result.

Programming Expertise in C Conversions 37

If an int variable is defined 2 bytes get reserved in memory and the binary representation of the value
gets stored in them. If the value is printed with %f, along with the 2 bytes of the variables the
adjacent 2 bytes are used to print the float value. Since we do not know what these two bytes contain
the result becomes unpredictable.

Surprised?

Consider the first program shown in the slide. The condition given in if() should evaluate to false
and give output as B. However, we get an output as A. Considering the result of first program, if we
execute the second program the output comes out to be B. The reason for this surprising output would
be discussed in the next few slides.

Appearances Are Misleading

By default a constant without a decimal point is considered to be an int. By default a constant with
decimal point is treated as double and not as float. Hence the size of 0.7 is reported as 8 (i.e. the size
of a double).

Binary of A Float

If 0.7 is converted to binary, the conversion goes into unending process, which we call recurring.
Value wise the 4-bytes recurring binary equivalent of 0.7 is smaller than the 8-bytes binary equivalent
of 0.7. If we convert 5.375 to a binary it is accommodated in 8 bytes as 5.375 is non-recurring
number.

This clarifies why in the programs given in slide number 8 gave unexpected results. In the first
program the condition turns out to be true resulting in A getting printed out. (As a comparison you
can imagine that 1.3333 is less than 1.3333333, even though both are representations of 4/3). In the
second program value wise 8-byte 5.375 turns out to be same as 4-byte 5.375. Hence the condition
fails and B gets printed.

Safety

By default a constant without a decimal point is an integer. If we want it to be a long integer we have
to add a suffix L. Similarly, a constant with a decimal point is a double. If we want it to be a float
constant we need to add a suffix f. In the if statement in the first program (top-left corner) since a and
0.7f both are floats the condition evaluates to false resulting in B getting printed out. In the second
program (bottom-left corner) the variable a of type double is initialized with 0.7. Then we have
compared a with the double constant 0.7. As both 64-bit recurring binary equivalent are same, we get
B as the output.

In the third program (top-right corner) a is of type float having value 5.375. This a is then compared
with float constant 5.375. As both are same the condition evaluates to false resulting into B getting
printed. Similarly in the fourth program (bottom-left corner) a of type double with value 5.375 is
compared with double constant 5.375. As this is a non-recurring double value the condition evaluates
to false resulting in B getting printed out.

ASCII Code
This slide shows the ASCII codes for the alphabets.

Characters to be Represented

This slide shows the characters that we would wish to represent. There are total 256 characters whose
ASCII values are from 0 to 255 i.e., starting from 00000000 to 11111111 in binary.

38 Conversions Programming Expertise in C

Graphics Characters

The editor window of Turbo C is shown in the slide. T in window is built out of a rectangle. We can
also construct such a window using graphical characters present in the ASCII character set.

To type the ASCII characters in the Turbo C editor, use Alt + ASCII value of the character. For
example, to print a vertical line press Alt + 179. The ASCII equivalent of various graphical characters
is shown in the slide.

ASCII Values

This slide shows the range of ASCII values representing each group.

Programming Expertise in C While Part — I 39

While Part-1

In this lecture you will understand:

* What are repetition control instructions
* What are incrementation & decrementation operators

40 While Part - 1 Programming Expertise in C

Control Instructions

We are already through with the sequence control instructions and decision control instructions. Let
us now start with the repetition or loop control instructions.

To Begin With...

To begin with consider the program that calculates the simple interest. Suppose we wish to calculate
the simple interest for different principal values with varying interest rates. To achieve this we have
to execute the program again and again. Instead it would be better if the language itself provides
features for repeating a set of instructions. This indeed is the job of the loop control instruction.

Repetition

To repeat the statements we can use while statement as shown in the slide. The while is a reserved
word or a keyword.

Using the while statement we can repeat a set of statements. However, we must specify how many
times the statements should get repeated. Hence in the while statement we must specify a condition.
As long as this condition is true the statements would be repeated. In this program the statements
written below the while statement will get repeated till the value of'i is less than or equal to 10.

We saw that using a while loop we can repeat a set of statements. However, if we run the program
without initializing the variable i the statements in while loop may not get executed at all. This is
because a variable (i), if not initialized would contain a garbage value which can be more than 10.
For the condition to be satisfied we must first initialize i. Hence in the slide the variable i is initialized
with 1.

Now the variable i stands initialized with a value 1. The control would enter while loop because the
condition is true. As long as this condition is true the printf() statement would be repeated. To break
the loop the condition should become false means i should become greater than 10. And since we
have not incremented the value of i or changed the value of i the loop will run infinite number of
fimes.

Let’s do all the things that are necessary to make while loop run properly. Firstly we have initialized i
a value 1. By doing so the condition satisfies and the control enters while loop. Note that we have
enclosed multiple statements within the pair of braces. This is because we want multiple statements
to get executed repeatedly. Like the if condition the default scope of while loop is only one statement
if braces are not used.

In the last statement we have incremented the value of i by 1. In every repetition (iteration) the value
of i would be incremented by 1 and as it becomes 11 the loop would break.

Logic Doesn’t Matter

The loop counter can be of type int, long, float or char. Also the loop counter can be incremented or
decremented by a suitable value as required. For example, in the program that we saw earlier we have
incremented the value of i by 1. We could have incremented it by 2. In this case the loop would have
executed for 5 times. Similarly, we can initialize the value of i as 10 and decremented it by 1. In this
case our condition would be while (i >= 1). If the loop counter variable is of type float then the
incrementation and decrementation can be in steps of fractional numbers.

Another Program

The program shown in the slide is similar to the one in the previous slide. There is only one
difference. The statement i = i + 1 has been replaced by i++. The ++ is called as incrementation

Programming Expertise in C While Part — I 41

operator which increments the value of the operand by one. The expression i++ works same as i =i +
1.

Incrementation/Decrementation Operators

On similar lines we have one more operator called decrementation operator that decrements the value
of an operand by one. Thus the expression i-- is same as i = i - 1. Remember the way we use
operators ++ and —, we cannot use operators such as **, //, %%.

For incrementing the value of a variable by 1 we can write i =i + 1 or i++. Can we use +++ operator
to increment the value of operand by 2? If yes, then to increment the operand by 10, should we repeat
+ 10 times? This doesn’t make any sense. We can only use +-+i or i++. There is no +++ operator in C.

Would This Work

Let’s see some subtleties of increment or decrement operators. The first example tells that increment
or decrement operator can be used in expressions. Next it is shown that writing
incrementation/decrementation operator before the variable is valid. But it cannot be used with
constants as in slide increment/decrement is used with 3. The third example on the left hand side is
also invalid. This is because the expression (j + k) would evaluate to a constant, and to that constant
we are trying to apply the incrementation operator ++, hence incorrect. The statement i = j—-2 ; is
valid as it is treated as i = j— - -2 which means that we are trying to decrement the value of j by one
and then subtract -2 from j. The statement i = j—-2 ; is not valid as it is treated as i = j— —2 where
again decrementation operator is applied to a constant 2 which is invalid.

Programming Expertise in C

While Part —IT

43

While Part-11

In this lecture you will understand:

*
#
*
*

What is pre & post incrementation/decrementation
The loop control instructions

The working of while loop

How to generate prime numbers

44 While Part — 11 Programming Expertise in C

Is 1++ Same As +H

Let us check whether i++ is same as ++i. Both the expressions increment the value of i by 1. But
there is slight difference in the way the expressions get evaluated. Let’s first see how i++ works.
When we write i++ in printf() the value of i would get printed and then the value of i would get
incremented by one. Hence, in every iteration, the value of i would get printed first and then would
get incremented by 1.

If we use the expression ++ in place of i++, then first the value of i would get incremented by one
and then the incremented value would get printed. For the program shown in the slide, we expect the
output as 1, 2, 3....10, but the output would be 2, 3, 4 ... 11. This is because the initial value ofi is 1.
As mentioned earlier, i would get incremented to 2 and then it will be printed. Thus, when the value
of i would reach 10, it will get printed, and again the condition being true, i would get incremented to
11 and would then get printed. The correct way to get the desired output is shown in the next half of
the slide.

To get the output as 12 3 49 10 the program in the previous slide can be modified, by initializing
i with 0 and changing the condition to i < 10 as shown in the slide. If you now run through the
statements you would find that the program correctly prints values from 1 to 10.

Thus, both pre and post incrementation operators can be used to get the same output, but with a
slight modification in the initialization of variables and the condition.

Two More Ways
We can print numbers from 1 to 10 in two more ways as shown in the slide.

Look at the conditions in the while statement. In case of the condition i++ < 10 of the first program,
first the condition is tested with the value of i and then i is incremented. As against this, in case of the
condition ++i < 10 of the second program, i gets incremented first and then the condition is tested
with the incremented value of i.

Compare

Let us compare the different ways in which we can print numbers from 1 to 10. In the program on the
left-hand side of the upper half, first the value of i would get printed and then the value of i would get
incremented. Whereas, in the program on the right-hand side of the upper half, first the value of i
would be incremented and then the value of i would be printed.

Two more ways are shown in the lower half of the slide. In the condition i++ < 10 the condition is
tested with the value of i and then i is incremented, whereas, in the condition ++i <= 10, i is
incremented first and then the condition is tested with the incremented value of i.

Print Nos. From 1 To 10

Let us consider the same program to print numbers from 1 to 10. Note the change in the
incrementation statement. The statement i += 1 is equivalent to i++, ++H.i=1i+ 1.

If we write
i+=5;
then the value of i would be incremented by 5 which is equivalent to i =i + 5. Similar to +=, we have

—=, *=, /=, %=. As these operators work together with the assignment operator they are called as
compound assignment operators. The examples of *= and %= are shown in the slide.

Programming Expertise in C While Part —I1 45

One More Way

Let us see one more way to print the numbers from 1 to 10. The program shown in the slide would go
on printing numbers infinite number of times. This is because, the non-zero value 1 in place of
condition in the while statement is treated as true value and this will remain constant. Thus, the
condition being true for all iterations the statements in the while block would get executed infinite
number of times.

To break the while loop the break statement can be used as shown in the slide. The break statement
is generally associated with a condition. It transfers the control to the first statement after the loop.
The break statement is used to terminate the loop. If we wish to terminate the execution of the
program itself we have a function exit(). Its usage is shown in the slide.

Calculate

Let us see how to calculate the factorial value of a given number, sum of first n natural numbers and
the value of one number raised to the power of another. The factorial can be calculated by
multiplying the numbers from 1 to n. The summation can be found out by accumulating the result of
addition of numbers that vary from 1 to n. The power can be calculated by multiplying a number n
number of times. As in each of these cases a number is varying for n number of times, looping
technique can be used to solve the problem.

Running Sum And Products

We have first declared and initialized a few variables. Variables s, p, pr would be used to store the
sum, product and power respectively. The variable i is used as a counter and n to store the number
entered by the user. The condition i <= n would cause n number of iterations. In every iteration, the
statements enclosed within while block would get executed thereby calculating running sum, product
and power. The result is printed after the loop is over. The corresponding values of i and s after each
iteration are shown in the slide where value for n is considered as 5.

Slide Number 8

Now let us try to find out the sum of first ten terms of the series shown in the slide. The pseudo code
for the program is shown in the slide. The value of the x is to be accepted through the keyboard.
Initialize the variables that are required as a counter and to store sum. Now through the loop calculate
the numerator part and the denominator part of the term. Then calculate the term by dividing
numerator by denominator. Then either add or subfract the term from the sum s depending on the
value of the counter. To repeat the while loop 10 times the condition i <= 10 is used. Lastly print the
sum s.

Slide Number 9

The program is shown in the slide. Initially the variables that are required for the program are
declared. The value of x is accepted through the keyboard. The sum variable s is initialized to 0 and
the counter i variable is initialized to 1. The statement j =2 * i - 1 ; in the outer while loop would
generate numbers like 1, 3, 5...etc. as shown in the slide. Now to calculate the numerator and
denominator part of the term, we have used one more while loop, which is a nested loop that gets
repeated j times. After calculating the numerator and denominator the term t is calculated. Finally
after checking whether i is even or odd using the conditional operator the sum is calculated. The sum
s has been printed after the loop is over.

Note that the statement (s = s + t) must put in parenthesis, otherwise it would result into an error.

46 While Part — 11 Programming Expertise in C

Prime No.

Let us now write a program to find out whether a given number is prime or not. First a number n, is
accepted through keyboard. Say the number 13 is entered. Now how do we find out whether this
number is prime or not? A number is said to be prime if it is divisibly by 1 or the number itself. Thus,
to find whether 13 is prime or not we need to carry out divisibility test for 13 by dividing it with
numbers from 2 to 12.

In while loop, in every iteration it is checked whether n (i.e. 13) is divisible by i (the loop counter), if
yes then the message ‘Not a prime number’ is printed and the loop is terminated otherwise i is
incremented by 1. We have used the break statement, which would terminate the loop the moment
divisibility test is satisfied. The control is transferred to the next statement following the while block.
However for a given number, if the divisibility test does not get satisfied, then after the loop is over
the value of the counter would be equal to the number n, which means the number is a prime number.
In our case 13 happens to be a prime number.

Output?

Let us find out the output of the program shown in the slide. The value of i being 5, i.e., non-zero and
j being 4 again a non-zero, on ANDing i with negation of j, the result would be 0 as the condition 1
AND 0 would evaluate to 0.

Next, consider the expression whose answer is assigned to b. The slide shows the two ways (marked
by red arrows) in which the statement b = ++i && ++j || ++k ; may get interpreted. As the &&
operator enjoys a higher priority than || the compiler would interpret the statement as shown below:

b=(++ && ++j) || ++k;

Here the && operator would get evaluated first and then the || operator. But before the logical &&
operator get evaluated, the unary prefix increment ++ operators would get evaluated. Thus, in this
case first due to incrementation operator the value of i, and j would become 5 and 6 respectively. As
these are non-zero values the result of 5 && 6 would be 1. Next, this result should get ORed with
++k, but as the result of the first condition is 1, there is no necessity to evaluate the second
expression. Hence the expression ++k would never get evaluated and the result of || operation is 1. So
the output for k would remain —1. On similar lines you can evaluate the expressions shown at the top
of the slide. In the expression condl && cond2 given at the bottom of the slide, the expression in
cond2 would be evaluated if expression in condl evaluates to true. Similalry, in the expression
condl || cond2 the expression in cond2 would be evaluated if expression in cond1 evaluates to false.

Programming Expertise In C

For

47

For

In this lecture you will understand:

* The working of for loop
* Differences between while and for loops

48 For Programming Expertise In C”

Loop Control Instructions

So far we have seen the while loop, now lets switch to the next looping statement, i.e. the for
statement.

The while Loop

Before switching to the next looping statement for, let us summarize how while works.

After initializing the loop counter the condition in the while loop is checked. Thus initialization is
done only once. whereas, in the loop the Test, Incrementation part keeps getting repeated till the time
the condition remains true.

The for Loop

As against a while loop, in a for loop the inifialisation, testing and incrementation are written in the
same line. On execution, firstly the initialization statement gets executed, then the condition is tested
and after executing the body of the for loop, the incrementation goes to work. The control flow of the
for loop is shown in the slide. Note that this control flow is same as what we saw for a while loop in
the previous slide.

The semicolons given in the for statement are necessary to separate initialization, condition and
incrementation/decerementation part.

Comparision - I

In this slide the comparison of for loop with while loop is explained. If the braces are omitted then
the while loop would get executed infinite number of times. On the other hand the for loop would get
repeated for finite number of times.

The scope of while statement is the first statement immediately after while. This statement keeps
getting repeated since the condition remains true all the time. The statement i++ never gets a chance
to get executed.

Whereas, in case of for loop statementl would be repeated 10 times. Since the incremenation would
always be done the for loop runs for finite number of times.

Comparision - I1

Let’s compare the while loop with the for loop in one more way. The programs shown in the slide
contains a semicolon after the while and the for statement. This semicolon acts like a null statement.
This null statement now forms the scope of the two loops. As a result, the while loop becomes an
infinite loop as the statements within the pair of braces do not get a chance to ever get executed. This
so happens because on satisfying the condition the null statement gets executed and the control again
goes back to the condition in the while statement.

On the other hand the for loop is a finite loop as the incrementation is executed after executing the
null statement. After executing the null statement 10 times, the statements within the braces would
get executed sequentially.

Print Nos. From 1 To 10

The program to print numbers from 1 to 10 looks more elegant with the use of for loop as compared
to a corresponding while loop.

Programming Expertise In C For 49

Dropping Initialisation

We are allowed to drop the initialisation part in the for statement (we cannot drop the semicolon,
however). But for the loop to work the loop counter must be initialized hence it has been initialized at
the time of declaration.

Dropping Incrementation

We can omit the incrementation, but for the loop to terminate or work finite number of times, it
should be present within the body of the for loop. Once again we cannot drop the semicolon after the
condition.

Dropping Condition

We can drop the condition along with the initialization and incrementation expressions in the for
loop. However, two semicolons cannot be omitted. But these omitted expressions must be explicitly
mentioned in the block wherever necessary as shown in the slide. To minimize the number of
statements within the block either of the two methods shown can be adopted.

Comparision — I1II

Let’s compare the while and the for loop in one more way. If the condition in the while statement is
omitted then an error would be flashed, whereas, in case of for if all the expressions are omitted and
the separators are given then the for loop would get executed for infinite number of times. This is
because if we drop the condition from the for it is treated as true always.

Drawing Boxes

A screen consists of 25 rows and 80 columns, numbered from 0 to 24 and 0 to 79 respectively. Let us
attempt to draw a rectangle from 10® row, 20™ column to 23 row, 70® column as shown in the slide.

Slide Number 24

The ASCII equivalents for the other corner characters are 217 (bottom-right), 191 (top-right), 192
(bottom-left). To print these characters at appropriate positions we have to place the cursor at the
required position. This is achieved using gotorc() function that places the cursor at the desired row-
column position. We also need to print the vertical and horizontal characters that would join the
corners of the rectangle. The ASCII equivalents for these characters are 179 and 196. We have drawn
the vertical and horizontal lines in for loops. The slide shows how to draw vertical lines. Try to draw
horizontal lines on your own.

Note that we have #included the “goto.c” file. The contents of this file are given below:

#include "dos.h"
union REGS i, 0;
gotorc (intx, inty)
{
ihah=2;
ihdi=y;
ihdh=x;
ihbh=0;
int86 (0x10, &i, &i) ;

You can create the “goto.c” file and write this function in it.

Programming Expertise In C Do While

51

Do While

In this lecture you will understand:

How to do multiple initializations in the for statement
How to do multiple incrementations in the for statement
How to implement the logic using do — while loop
Difference between for, while and do-while loops
Where to use break and continue statements

* % ¥ ¥ W

52 Do While Programming Expertise In C

Combinations

The slide shows all possible combinations of digits 1, 2, 3. We intend to write a program that would
generate these combinations.

Starting Off

Let us try to write a program that would generate the combinations shown in the previous slide. In the
program we have declared three integer variables namely i, j and k each initialized with 1. Next,
through a for loop we have printed the values of i, j and k, where k is varying from 1 to 3. Thus the
program would generate only the first three combinations.

Adding One or More Loop

Now add one more for loop to the same program. The outer for loop would run three times with j
varying from 1 to 3. For each value of j the inner for loop would run three times with k varying from
1 to 3. On execution the program would generate the 9 combinations shown in the slide. But still this
is not the desired output.

Finishing Off

This time we vary i too from 1 to 3. For each value of i, j takes three values, and for each value of j, k
takes three values. This results into generation of 27 combinations.

Unique Combinations

The combinations of digits shown in the earlier slide were not unique. By the term unique, we mean
that while printing the values of variables, no two variables should have the same value. To get such
unique combinations, before printing the values, we must check that i should not be equal to j, j
should not be equal to k and again k should not be equal o i.

The condition if (i!=j && j !'= k && k !'=1i) would print the values of variables i, j and k only
when their values are not matching. The condition shown in the rectangular box in the slide is wrong
because it checks the result of i != j with k.

One More Way

One more way to generate unique combinations of 1, 2, 3 is shown in the slide. Here instead of
checking for inequality of the variables we are checking the equality. Thus, when i is equal to j. or j
is equal to k, or k is equal to i, break would simply terminate the k loop and continue with the next
value of j. This appears to be alright. but on execution this program generates only 2 combinations.
The culprit here is the break statement. Ideally when a non-unique combination is encountered
instead of terminating the k loop the next value of k should be generated. The next slide shows how
this can be achieved.

The Correct Way

Instead of terminating the loop with break statement we have used the continue statement. As a
result, on executing the continue statement the controls is transferred to the k++ part of the k-loop.
The values of variables i, j and k get printed only when they are unique.

Instead of continue we could as well have used a null statement (i.e. a ;) to produce the same results.
However, do not form an impression that a null statement is a replacement for continue. This can be
verified from the loop shown in the box in the slide. Here when continue goes to work “Hi” doesn’t
get printed as control reaches k++. If continue is replaced by a null statement, then on execution of
the null statement the control is bound to reach printf().

Programming Expertise In C Do While 53

Multiple Initializations

Here i and j are being initialised at one place, whereas, k is being initialised at another. Instead we
can do multiple initializations in the for statement itself as shown in the next slide.

When we do multiple initializations in the for statement the initializations must be separated using a
comma. Also multiple conditions can be grouped together using logical operators && and ||. If we
wish we can drop incrementation/decrementation of any/all variables.

Types of Loops

So far we have seen while and for loops. Now let us see another type of loop, the do-while loop.

The do-while 1.oop

Let us now write a program that generates numbers from 1 to 10 using the do-while loop.

In case of do-while loop the initialization of the counter variable must be done before the loop
begins. The incrementation expression for the counter variable should be present inside the do-while
block. The condition in the do-while loop is tested at the end of the loop. As no testing is done when
the loop begins, the statements inside the loop are executed at least once even if the condition fails for
the first time.

The statements in the loop must be enclosed within a pair of braces even if there is a single statement
in the loop. Also, the semicolon after the while() is a must. Make it a convention to write while
following the closing braces of the do-while loop so as to avoid confusion between do-while and
while.

Compare

We have now three methods two generate a loop within a program. Is there any difference between
these three techniques? Let us find it out.

The do-while loop would give output as ‘Hi’, whereas, the other two loops would not output
anything. This is because in case of for and while the condition is checked before the control enters
the loop. And since the condition is false the printf() is not executed even once.

As against this, in the do-while the testing of the condition is done at end of the loop. So, the printf(
) statement would print ‘Hi’. Next, the condition being false the loop would get terminated.

Effects of break & continue

Now let us see the effect of break and continue statements on while, for, and do-while loops. The
slide shows where the control would reach on execution of break and continue in each of the three
loops. Note that break or continue statement is associated with if and can be can be used in
conjunction with loops (for/while/do-while) only. They cannot be used with if() only as shown in
the slide.

Unknown No. of Times

Now consider the program shown in the slide where the loop has to be repeated for an unknown
number of times.

In the program we have initialized variable ch with value 'y'. To begin with the condition is true. The
users choice, accepted through the keyboard would get stored in ch. If user presses n the loop would
get terminated. Thus, at the time of compiling the program, how many times the loop would get
repeated was not known.

54 Do While Programming Expertise In C

Now, the problem with this code is that, even when the user supplies uppercase Y as an input, the
loop would get terminated. This is because as given in the condition the choice for ch should only be
lowercase y.

To allow our program to accept both lowercase and uppercase character any of the three conditions
shown in the slide can be used. The function toupper() converts lowercase alphabet to an uppercase.
Whereas the function tolower() converts an uppercase alphabet to lowercase. Do not forget to
include “ctype.h” header file in your program so as to make use of these functions.

Programming Expertise In C

Switch

35

Switch

In this lecture you will understand:

* Where to use break and continue statements
* How to use switch-case control instruction

356 Switch Programming Expertise In C

Control Instructions

Till now we have covered sequence, decision and repetition control instructions. In repetition control
instructions we discussed the working of loop forming statements while, for and do-while. We also
studied the effect of break, continue statements as well as that of incrementation, decrementation
and compound assignment operators. Now let us focus our attention on ‘Case control’ instructions.

Slide Number 2

The program shown in the slide accepts a number between 1 and 3 as a choice and according to the
number entered by the user it prints the appropriate message. If the user enters number greater than 3,
then the program would print a message as “Wrong choice’.

Though looks very easy. this program has three problems. Suppose the maximum number that can be
entered is 10. More the number of alternatives to make a choice, more would be the number of
statements. Secondly, the number of nested if-else would also increase. The statements would slide
towards right due to indentation. Thirdly, tracking of a logical error would become difficult.

We have two alternatives. Either use logical operators or case control instruction. Logical operators
would not be of any use, as we do not want to check a number that falls in a range. Rather we want to
check for the number constants. The best alternative, when we want to check for numeric constants,
is to use the case control instruction.

Slide Number 3

The program written earlier using if-else statements is now written using the switch-case statement
as shown in the slide. The control statement, which allows us to make a decision from the number of
choices is called a switch-case. The integer expression following the keyword switch is any C
expression that will yield an integer value. Let us see how the switch-case instructions get executed.

First, the number n entered by the user is passed to switch. The value is then matched, one by one,
against the constant values that follow the case statement. When a match is found, the program
executes the statements following that case, not only that but all the subsequent case statements
would also get executed. How to handle a situation when the user enters wrong choice? It is incorrect
to write else for the wrong choice. else is not allowed in the switch-case statement.

Slide Number 4

Instead of the else statement we have to use default label as shown in the slide. When the number is
not matched with any of the given case statements then the control is transferred to default case.

Now, suppose user enters a choice as 2 then the output “You entered 2’ is expected. The actual output
is shown in next slide.

Slide Number 5

As mentioned earlier, when a match is found, the program executes the statements following that
case, not only that but all the subsequent case statements would also get executed. Thus, instead of
one line, there would be three lines of output as shown in the slide. The solution to overcome this
problem is discussed in the next slide.

The Solution

You can place the statement or group of statements following each of the case within a pair of braces.
But, the braces are optional. Even if you include braces for multiple statements, the subsequent case
statements would get executed sequentially. To get desired output we will have to make use of break

Programming Expertise In C Switch 57

statement with every case. When a particular case is satisfied, break would transfer the control to the
next statement that comes immediately after the switch-case statement.

What If continue

We are wrong if you think that the way break works continue statement shall also work with switch-
case. As you know, continue statement is associated with a condition hence it is illegal to use it with
switch-case.

Slide Number 8

As shown in the slide, the cases in a switch can be written in any order. The order is not important.
Secondly, even if there are multiple statements to be executed in each case there is no need to enclose
these within a pair of braces.

Slide Number 9

Moreover, it is not necessary to have default label at the end of the switch. It can be placed at the
beginning before all case statements.

Slide Number 10

Even the default case is optional. It can be omitted if not required. In absence of default case, the
program simply falls through the entire switch and continues with the next instruction that follows the
control structure.

Slide Number 11

As shown in the slide, like integer constants, the character constants can also be checked using
switch-case statement. In the program shown in the slide, we have given case statements that check
for an uppercase alphabet. Can we not check for the lowercase alphabets? Yes, we can.

Slide Number 12

One can think of using logical operators to check both, the lowercase and uppercase constants. When
we compare character constants their ASCII values are taken into consideration. When these ASCII
values (non-zero values) are grouped together with the logical operators would evaluate to true value
(1). As a result, all the case statements shown in the program would become 1. This tells that more
than one constant cannot be specified with a case label.

Slide Number 13

The solution for the problem we have seen in the previous slide is to write separate case labels for
each constant value that is to be tested. Group together those case labels for which you want a
particular statement or group of statement fo be executed.

In the program shown in the slide, we have written separate case statements for a lowercase and
uppercase constant which are then followed by the statements that are to be executed when an
alphabet is entered in either of the case (upper or lower).

Suppose user enters an alphabet as a, then the first case would get satisfied. As there are no
statements to be executed in this case the control would automatically reach to the next case 'A' and
would execute all the statements in this case. This happens because, when a case is satisfied the
control simply falls through the case till it doesn’t encounter a break statement. Note that here the
order in which the cases are written is important. Library function toupper() or tolower() can also
be used to convert from small case to capital case character or from capital to small case character
respectively. But this function cannot be used for numbers.

38 Switch Programming Expertise In C

The program given in the slide can be modified by using switch (toupper (ch)) in place of switch
(ch). By doing so we can omit the cases for lowercase alphabets.

Would This Work

The program shown in the slide shows that the variables cannot be used with the case. Only constants
(char or int) are allowed with case.

General Form

Having gone through the subtleties of the switch-case statements, let us form some general rules for
switch-case statement.

The expressions that contain constants or variables can be given as an argument with switch. The
expression would get evaluated and the result would be passed to switch. With the case an expression
with only constant values should be used.

Checking Switch

We can check only integer and character constants with switch-case. Real constants are not allowed.

Now the question arises as can we use switch as a better replacement for if? Yes and no. Yes,
because it offers a better way of writing program as compared to if, and no because in certain
situations we are left with no choice but if. The situations where one wants to compare floats, number
range and even expressions that include variables can be better handled by if-else.

Next question that arises is which works faster? Switch-case works faster then if-else. This is
because the compiler generates a jump table for switch during compilation. As a result, during
execution it simply refers the jump table to decide which case is satisfied. As against this if-else are
slower because they are evaluated at execution time. A switch with 10 cases would work faster than
an equivalent if-else ladder.

Programming Expertise In C

Menu

59

Menu

In this lecture you will understand:

How to create menu driven program
How to define a function

How to declare a function

How make function calls

* * * *

60 Menu Programming Expertise In C

Menu Management

We would try to develop a menu-driven program. The menu would contain four items as shown in
the slide. The first item in the menu should appear in the 10® row and 20™ column. Correspondingly
the second item would appear in 11™ row, 20® column, third item in 12 row and 20™ column and so
on.

Slide Number 2

Let’s attempt to write the program. The first step is to display menu. The code shown in the slide
displays the menu. gotorc() function would position the cursor at suitable row and column. The
printf() following the gotorc() would print a menu item at this cursor position. The gotore()
function has been defined in a file called goto.c.

Slide Number 3

For managing the menu, users’ choice is accepted as soon as menu is displayed. The actions to be
taken can be decided with the use of switch statement. Each case handles the corresponding choices
given in the menu. In the default case i.e. for the choice other than those listed in the menu, a beep is
sounded as a warning to the user that he has made a wrong choice. The beep can be sounded by
sending an escape sequence “\a’ to the printf(). “\a’ stands for alert.

If more than one beep character is specified in the printf() statement then a long beep would occur
since the time span between the first beep ending and second beep starting is very small.

No while, No Menu

The menu should continue to appear till the user doesn’t select 0 from the menu. To ensure this a
while loop has been inserted to run indefinitely. But now to terminate the program, the exit()
statement is used in place of break statement in case 0, which terminates the program.

For any menu to work it would be necessary to use an infinite loop and the switch statement inside it.

Break From The Outermost Loop

Suppose there are three nested loops as shown in the slide and we want to break out of the innermost
loop. The inner for loop has got a condition with a break statement. If this condition becomes true
break statement would not transfer control out of all the loops, rather it would merely transfer the
control to the statement that comes immediately after the inner loop(in our program from k loop). To
terminate the subsequent outer loops we need fo again specify the same condition and the break
statement. This would be tedious if the number of loops is more.

In such a case goto statement can be used.

Better Way

If the condition in the inner loop is satisfied then we want the control to go outside the outermost
loop. For this goto statement can be used as shown in the slide.

The goto statement can transfer the control anywhere in the program. Thus, on satisfying the
condition the statement goto out, would transfer control to a place in the program where out label is
written. The label is a word followed by a : (colon).

A null statement has been given, as we do not want to perform any other action once control reaches
outside the outermost loop.

Never use goto in any other situation except breaking the control outside the outermost loop from
within the innermost loop.

Programming Expertise In C Menu 61

Where Am I

Instead of going out of the loop we can also transfer control inside the loop as shown in the slide. If
you use several gotos within a program soon it would become difficult to trace out how the control is
flowing.

Control Instructions

We are now through with the control instructions available in C. We have discussed all the control
instructions listed in the slide.

Functions

Let us now move on to another feature of C called functions. Functions minimize the complexity of
the program by breaking the code and writing it in separate units known as functions.

The function familiar fo us is main() from which the execution begins. A function is identified by
the identifier name followed by a pair of parentheses. The functions that we have used in our
programs so far are printf(). scanf(), etc. Note that for(), while(), if(), switch() are control
statements, and not functions even though they are followed by a pair of parentheses.

The program in the slide consists of three functions, main(), bombay() and kanpur(). The output
of this program is as shown in the slide as the functions bombay() and kanpur() do not get
executed at all.

Calling Functions

Whenever a function is to be executed, a call to that function should be made. The function name
followed by a pair of parentheses and terminated by ; (Semicolon) identifies a call to the function.
The function name followed by block is called definition of the function.

In this program firstly the printf() statement in main() would get executed. Now on calling
bombay(), the control is transferred to the body of the function bombay(). After executing the
statements in this function, the control would returns to the statement from where the call to
bombay() is made. Since that statement only contains the call, the next statement is executed. Now,
the function kanpur() would get called similarly. Hence the output as shown in the slide would get
generated.

Functions

Functions are categorized as standard library functions and user-defined functions. Standard library
functions are those functions, which come ready-made with the compiler, whereas, user-defined
functions are the functions that are defined by the user. The printf(), scanf(). etc., functions are
library functions, whereas, kanpur(), bombay(). gotorc(), which are defined by us are called user-
defined functions. Even main() is a user-defined functions as we define it every time when a new
program is written. But the compiler generates a call to main.

Tips
Go through the tips shown in the slide.

Programming Expertise In C Functions 63

Functions

In this lecture you will understand:

* How to pass values to the functions
* How to returning a value from the function

64 Functions Programming Expertise In C

Order, Order

The functions can be written in any order. Functions get executed whenever they are called. Call to
the functions decides when to execute them, and not the order in which they are defined.

Whatever be the order, execution begins from main(). The program shown in the slide proves this by
printing I am in main. And then the function bombay() is called, which prints I am in Bombay.

More Calls, More Bills

We can call the same function any number of times. But if there were more calls to a function it
would slow the execution of the program. This is because, whenever we call a function the control is
transferred to the function and after executing the body of the function the control returns to the
statement from where the call is made. Hence if more calls are made, time is wasted in passing
control and refurning control.

Nobody Is Nobody’s Boss

Any function can be called from any other function. The program shown in the slide illustrates this
point. Through main(), function bombay() has been called. which calls function kanpur() and
function kanpur() in turn calls the function bombay().

Local v/s STD v/s ISD Calls

The way we have different types of phone calls, like Local, STD or an ISD call, C also categories
function call as simple or recursive call fo a function. Thus, when a function calls itself, we say that a
recursive call to a function has been made. The process is known as Recursion.

In the program, function main() has called itself, hence main() here is a recursive function.

Communication

Let us now see how a program communicates with the function it has called. In the program shown in
the slide, we have defined a function calsum(). In main() variables a. b, ¢ and s are declared. Of
these variables a, b and c are initialized with some integers. The variable s has not been initialized so
it will hold a garbage value. Next, a call to calsum() function has been made. In this function also we
have declared same variables a, b, ¢ and s. This is a different set of variables than the ones declared
in main(). As variables a, b, ¢ are not initialized they will hold garbage values and so s will hold
sum of these garbage values. After printing the value of s control will return to main() and printf()
would be executed. Again a garbage value would get printed, as s of main() too holds garbage value.

Note that, the garbage values printed by function calsum() and main() would be different. This
clarifies that variables declared in main() and those declared in calsum() have no connection.
Passing Values

Since a. b, ¢ declared in main() are not available to calsum() we need to pass their values to the
calsum() function. This can be done by enclosing these variables within a pair of parentheses while
calling the calsum() function. These values are called actual arguments or parameters.

The values passed are collected in the corresponding variables present within the parentheses of the
called function. These variables are called formal arguments.

In the program the values of variables are passed to the function calsum(), by the statement,

calsum(a,b,c);

Programming Expertise In C Functions 65

The values of a, b and ¢ are collected in the variables x, y, z. As these variables are new to the
function, they must be declared. While declaring formal arguments they must match in number, order
and type. By number we mean that if 3 actual arguments are passed to the function then it must
receive them in three formal arguments. By order and type we mean that the formal arguments must
be in same sequence and with same data type as that of the actual arguments.

Next, the sum is calculated and stored in s. But in main() when we print the value of s it turns out to
be the garbage value. This is because the value 60 that was calculated in the calsum() function is
neither returned and nor collected in main().

Returning Values

Note the modifications done in the program to get the desired output. In the function calsum(), we
have added return statement that returns the sum to main().

In main(). the sum returned has been collected in variable s through the statement,
s=calsum(a,b,c);

The return statement returns a value. We can either write a constant, a variable or an expression after
return. However return ; simply returns the control to the calling function. return (ss) ; returns the
value of variable ss. return (60) ; returns 60 to the calling function. return (x +y + z) ; returns the
result after evaluating the expression.

Are These Calls OK?

All the calls to the calsum() function shown in the slide are valid. As illustrated in the slide, the first
three calls to function calsum() are not collecting the returned values. This proves that the returned
values can be ignored.

In the third statement within a call, a call to same function calsum() has been made. Here the inner
calsum() would get executed first. The value returned by this call would be used as second
parameter for the outer call to calsum(). Thus nested calls are legal.

The last statement shows that an expression can have function calls. The value returned by the
function would replace the function call.

Returning More Than One Value
How to return more than one value? In an attempt to return more than one value the way shown in the
program is incorrect as a function can return only one value at a time.

One More Try

Let’s try some other way to return more than one value. In the program two separate calls have been
made. In the first call the value returned is received in the variable s. In the next call the value
returned is received in the variable p.

Now in the function sumprod() two return statements are added, that would to return the sum ss and
product pp. In main(), we have printed the values received through sumprod().

The expected answer is 60 and 6000. However, the answer would be 60 and 60. How?

The reason is, the return statement immediately returns the control to the calling function, hence
with every call made in the main(), only the first return statement would return the value, and
second would never be executed. This confirms that a function can return only one value at a time.

66 Functions Programming Expertise In C

The Only Way Out

If we wish that sumprod() should return sum and product we should pass one more variable to it.
Depending on the value of this variable the function should return either the sum or the product. If 1
is passed sumprod() would return sum and if 2 is passed sumprod() would return the product.

The same idea can be extended to return average, variance, standard deviation, etc.
A Better Way

In the earlier slide the value of code is checked through the if statement. Instead, we can use
conditional operators. However return statement cannot work in ? :. Hence the most compact way to
write the function is to use ? : within the return statement as shown in the slide.

Programming Expertise In C Advanced Features 67

Advanced Features

In this lecture you will understand:

* How to refurning non-integer values from the functions
* What are Pointers

* How to print address of variables

68 Advanced Features Programming Expertise in C

ANSI V/s K&R

For declaring the formal arguments we have two notations: ANSL K & R (Kemighan and Ritchie). In
ANSI notation all the variables are declared within the parenthesis following the function name.
Every variable needs to be declared independently. This becomes tedious if there are a large number
of variables of same type. In K & R noftation there can be a common declaration for variables of the
same type. Most of the compilers today use the ANSI notation.

Roman Equivalent

We wish to now write a program that converts a given year into its roman equivalent.

In main(), a call to user defined function romanize() has been made. To this function we have
passed the value of y, which represents year, as a parameter. In function romanize(), only the
equivalent for 1000 is printed. So, our task still remains incomplete, as the entire year has not been
represented so far.

A More General Call

Now, in the call to function romanize() we have passed three parameters, the year y, decimal
number 1000 and its roman equivalent 'm’.

In function romanize(), we have found out how many 1000s are present in yy and then we have
printed those many ‘m’s. Lastly we have returned that part of yy, which is not divisible by 1000.

Slide Number 4

Here romanize() has been called several times. If the year supplied to scanf() is 1998, then in the
first call it determines how many 1000s are present in 1998 and print out those many ‘m’s. In the
second call it determines how many 500s are present in 1998 and prints out those many ‘d’s and so
on.

In the last call to romanize(). the value returned is not collected. as we do not need the value that is
returned.

Advanced Features of Functions

Let us see some of the advanced features of C as listed in the slide. We shall study them one by one.
To begin with, let us discuss how to return a non-integer value from a function.

Returning A Non-Int Value

The program calls square() to determine the squares of 2.0, 2.5 and 1.5. On printing the returned
values we get 4.0 6.0 2.0. This is obviously wrong. However, when the square values are printed in
the square() function they turn out to be 4.0, 6.25 and 2.25. This means that when square() tried to
return a float value only the integer part of it got returned.

To return a non-integer value, the definition of square() must be preceded by float. This would tell
the compiler that the function is going to return a float value. We also need to specify the function
prototype in main() indicating that square() is a function, which is going to receive a float and is
going to return a float.

What’s Wrong?

Since prototype of function square() is not present in function f() we cannot call square() from ().
The program on compilation gives an error.

Programming Expertise In C Advanced Features 69

The two ways to avoid this error is to mention the prototype of square() in f() or by declaring it
above the main() as indicated by the arrows in the slide.

What Would Be The Output

It seems that the second printf() should print 10 as f() is not returning any value. However, on
execution it prints a garbage value. This means that by default any function returns a garbage integer
value.

Solution 1

If we want that the second printf() should also print 10 then do not collect the value returned by f().
This function would continue to return the garbage value. Only thing is now we are not collecting the
value anywhere.

Solution 2

Another way is to ensure that no value ever goes back from f(). This is achieved by declaring its
return type as void. void prevents a function from returning any value. Moreover, if we try to collect
the value now, the compiler would flash an error.

Advanced Features of Functions

Let us now look at another advanced feature of functions—Call by Value/Call by Reference. To be
able to understand this we first need to understand a concept called Pointers.

Programming Expertise In C Pointers The Biggest Hurdle!! 71

Pointers The Biggest Hurdle!!

In this lecture you will understand:

* What can we do with address of operator (&)
* How to use value at the address operator (*) to access values
* How to access VDU memory using pointers

72 Pointers The Bigest Hurdle!! Programming Expertise In C

Things Are Simple

Declaring a variable i of type int reserve space in memory to hold the integer value. The name i is
associated with this memory location (say 4080) and 10 is stored at this location. This is shown in the
memory map.

These locations in memory are termed as an address, reference, memory location or cell number but
conventionally address is preferred.

The value of i is printed as 10. &i prints 4080, the address of i. It is clear from the memory map that
it is the location where the value of i is stored. & is known as ‘address of® operator as it retrieves the
address.

*(&i) prints value 10 stored at memory address of i. The operator * is called ‘value at address’ or
‘indirection’ operator.

Would This Work

j is assigned the address of i. The & operator can be used only with a variable, hence j = &23 is
invalid. It cannot be used with any expression or constant as in j = &(i+ 34).

(a) *j prints the value at address stored in j
(b) *4568 prints value at address 4568.
(c) *(4568 + 1) prints value at address 4568 + 1.

These expressions are valid but needs some changes to work properly.

The Next Step

i contain a value 10, its address (i.e. 4080) is stored in j and j’s address (i.e. 6010) is stored in k. The
memory map of these three variables is shown in the figure.

i would print its value 10. &i would print its address 4080. *(&i) would print 10, as seen in the
earlier slide.

Now j is assigned address of i. &j would print j’s address 6010. j would print its value 4080. *&j
would print value at address of j (i.e. *(6010)), which is 4080.

Now Kk is assigned the address of j. Hence k. &k, *k and *&k would print 6010, 5112, 4080 and
6010 respectively.

The output for last printf() would print 10 for all expressions. *&i means the value at address of i,
which is 10. *j means value at address stored in j, i.e. value at address 4080 which is again 10. &j
would give 6010. *&j means value at 6010 which is 4080. **&j means value at 4080 which is
nothing but 10.

Thus **&j would become **(6010) which in turn would become *(4080) which would give 10.

In Essence
This slide summarizes what we have learnt so far.

The statement int *j indicates that j is a variable that stores the address of another integer variable. In
other words j is a pointer to an int or j is an integer pointer.

int **k indicates that k is a pointer to an integer pointer. k is storing the address of variable j which
is holding address of another integer variable i.

Programming Expertise In C Pointers The Biggest Hurdle!! 73

1 stores the address of k., which in turn holds the address of j, which holds address of an integer.
Hence 1 is a pointer to a pointer to an integer pointer. On similar lines m is a pointer to a pointer to a
pointer to an integer pointer.

& should not be used in the declaration. Using && would make it a logical and operator.

Accessing Screen

Let’s access the screen using pointers. The program shown in the slide intends to convert characters
on the screen from uppercase alphabets to lowercase or vice versa.

A char pointer s is initialized with the memory address of 0 row, 0™ column of screen., i.e. 100. The
for loop executes the loop 2000 times (25 rows x 80 cols). The expression *(s + i) returns value at (
100 +i). In each iteration it checks for the character whether it is falling in the range of lowercase or
uppercase alphabets. If it happens to be 'A' then we are placing 'a' at that address by adding the value
32 ('a' - 'A' = 32). If the character is 'a' then to place 'A', we are subtracting 32 from the character.
The whole code is repeated indefinitely through an indefinite while loop.

But on compilation the program won’t work as excepted since the screen’s base address is not 100
but 0xB8000000. Also s should be declared as far *. We would discuss about far and near in next
lecture.

Even after changing the address, the program shown in the slide won’t execute properly. This is
because each character on the screen is at an offset (distance) of 2 bytes from the previous character.
So. the last character i.e. the character at 25™ row and 80th column is at an offset of 3998. Hence the
loop should be repeated for 3998 times at a step of 2 beginning from the character at the base address.

Programming Expertise In C More Pointers - 1 75

More Pointers - 1

In this lecture you will understand:

* How to create a program that directly accesses VDU memory and make characters fall to give a
raindrop effect.
* How to play sound

76 More Pointers - I Programming Expertise In C

To Make Characters Fall

Above 640 KB RAM, there are 2 blocks (block A and block B) of 64 KB each. While working in text
mode all text displayed on the screen is written fo the B block starting at address 0xB8000000. Each
character present on the screen uses 2 bytes in B block. The first byte contains the ASCII value of the
character, whereas the next byte contains the color of the character. Using this knowledge let us see a
program that makes characters on screen fall.

In the program given in slide, in main() two far pointers s and v have been declared. The pointer s
stores the base address of the screen (0xB8000000) and v is used for making the characters fall.

As we know, for each character present on the screen there are two bytes in reserved in VDU (Visual
Display Unit) memory. Thus, for 80 characters on each row there are 160 bytes in VDU memory.

The character present in 0™ row, 0™ column is first collected in ch. Next, through a for loop. the
address of the next row, 0® column is calculated and stored in v. At this address the value in ch is
written.

Make All Characters Fall

If we want all characters present in 0™ row to fall one after another, then a slight modification is
required as shown in the program given in the slide. Here, a loop for columns is added. Each time
through this loop a character at 0xB8000000 + c * 2 location is collected in ch. Then through another
for loop, which runs for row, the new position of the character is calculated in v and value in ch is
placed in v. This moves the character from a column ¢ of 0™ row to next row r. but same column c.

Any Screen Address

The code given in the slide shows how a character can be placed at a specified row and column. For
example, to place a character at 10 row and 20® column, we must cross 10 rows (0 to 9). Every time
we go to the next row we need to add 160 bytes (80 x 2). Similarly. to reach 20® column we need to
cross 20 columns (0 to 19), and to go from one column to another we need to add 2 bytes. Hence,
while calculating address of position at which ‘A’ has to be displayed, we have multiplied 10 by 160
and 20 is multiplied by 2 and then added to the base address 0xB8000000. Once the address is
generated the character 'A’ is placed at that address.

In general, to display the character at the specified row column position, row number is multiplied by
160, column number by 2 and the result is added to the base address.

Bells And Whistles

If you execute the program shown in slide number 2 you would observe two problems. Firstly we do
not get the effect of the characters falling down. Instead the characters seem fto be just getting written
in subsequent rows. Secondly, the activity happens very, very fast. A solution to this is given in the
program given in slide.

To remedy these problems, after displaying the character the character above it is overwritten with
space after a delay of 60 milliseconds by calling the delay() function. As the characters fall down
sound is produced through the sound() function. The sound stops when nosound() function is
called. A delay is introduced so that the sound is heard for a little while.

As an exercise you can try for making the characters fall down randomly from the screen. For this use
random() function to generate a random row and column number. Initialize the random number
generator through randomize(). To be able to use this function #include ‘stdlib.h’ file.

For example, random (30) generates a random number between 0 to 29. If we want to generate a
random number in the range 300 and 350 use 300 + random (50).

Programming Expertise In C More Pointers — 11 77

More Pointers - 11

In this lecture you will understand:

* What are toggle keys
* How to switch On & Off Caps lock programmatically
* How to restart computer without physically depressing Ctrl + Alt keys

78 More Pointers — 11 Programming Expertise In C

Are They Same

While declaring more than one far pointer far keyword should precede each pointer. Thus the
statement,

char far s, *v ;
declares s as far pointer whereas v simply a char pointer. The correct statement is given in the slide.

Also the declaration and initialization can be merged into one statement as shown in the slide. Note
that here, s is a pointer and its type is char far *.

Why Two Bytes Apart

The character displayed on the screen, requires two bytes in VDU memory. In the first byte the
ASCII value is stored and in the next byte (also called color byte) value representing the color of
character is stored. One byte means 8 bits, thus the maximum value obtained by setting 1 in all bits
(of color byte) would be 255.

The program given in the slide uses this knowledge to change the color of characters on screen. Here,
through a for loop we have changed the color of character on screen. Note that the loop counter i in
for varies from 1 to 3999, 1 to access the color byte of character at 0xB8000000 and 3999 because
one screenful of characters need 4000 bytes (i.e. 80 x 25 x 2= 4000, i.e. 0 to 3999). The value of
color is incremented by 1 and if it exceeds 255 then color is reset to 0. The internal for loop is
enclosed within an outer while loop, which runs indefinitely, thus keeps on changing the color of
characters on screen.

Caps Lock

Keys such, as Caps lock, Num lock, etc. are known as toggle keys. The status of the toggle keys is
stored at address 0x417. The status of Caps lock is stored in the 6™ bit. If this bit is 1 then Caps lock
is on, whereas, if it is 0 then the caps lock is off.

If we are to set the caps lock bit on we must write a value 01000000 (i.e. 64) at 0x417. The program
given in the slide does this. To put off the caps lock store a value 00000000 at 0x417, or simply hit
the caps lock.

Don’t Do Delete

The bit number 2 and bit number 3 of the 0x417 byte store the status of Ctrl and Alt keys. If we store
00001100 at 0x417 these keys would be considered to be depressed.

In the program given in the slide, we have stored 12 i.e. 00001100 in 0x417. On executing the
program if Del key is pressed, the machine restarts because even though we have not physically
depressed the Ctrl and Alt keys, their bit values at 0x417 are on.

Programming Expertise In C Near Far 79

Near Far

In this lecture you will understand:

* What is far and near pointer
* What is segement:offset addressing scheme

80 Near Far Programming Expertise In C

Why far and near

In the program given in the slide a pointer variable kb is declared as far whereas rest of the pointer
variables are declared as near (the default). The reason for this is explained in the next few slides.

Internal Details

The microprocessor is the heart of all the PCs. The microprocessor is also called Central Processing
Unit, or simply CPU.

A CPU consists of an Arithmetic Logic Unit to perform arithmetic and comparisons, Control Unit to
control other units of computer and Memory chips to store information. The microprocessor usually
consist of Arithmetic and Logical Unit and Control Unit. So microprocessor may not be complete
CPU in itself. But with wide spread use of microprocessors, they have come to be called CPUs.

The CPU controls the computer's basic operation by sending and receiving control signals, memory
addresses, and data from one part of the computer to another using Data lines, Address lines and
Control lines respectively. The control signals, address and data are carried from one part to another
through a 'bus'. A bus refers to a group of interconnecting electronic pathways (or set of wires) that
connect one part of the computer to another.

Each wire in this bus carries a bit of data at a time (either '1' or '0' in the form of an electronic pulse).
If the data bus has 8 wires then 8 bits data bus, similarly we have 16-bit and 32-bit data buses that can
carry 16 and 32 bits at a time respectively. A MP with a provision for 16-bit data bus is called a 16-
but microprocessor. Microprocessor consists of registers in it, its size depends on the data bus size (in
our case 16 bit wide).

The way the data bus width tells how many bits the bus can move at a time, there is another bus
called address bus whose width tells how many addresses the microprocessor can access. For
example if the address bus width of MP is 20 bits then it can access 2?° locations (1 MB) in memory.

To access any of the 2*° memory locations the MP uses 16-bit registers. However in 16 bit registers

the maximum value that can be stored is 65536. In example shown in the slide variable i is assigned
with value 3, this gets stored in the memory at the location 0AB00. When we access this variable
through the data lines, address lines and control lines 3, 0AB00 and 1 are passed to CPU respectively.
Internally it is done using Segment and offset addressing scheme. This is discussed in detail in the
nexft slide

Segment: Offset Scheme

To access any of the 2%° locations the MP use 16-bit CPU registers. However in 16 bit registers the
maximum value that can be stored is 65536.We can access memory location beyond 65535™ byte by
using two registers (segment and offset) in conjunction. For this total memory (1MB) is divided into
a number of units each comprising 65536(64kb) locations. Each such units is called segment.

2% = 1MB,
2!°= 64 KB,
Therefore, number of units = 1 MB /45 KB = 16 units (segments).

Each segment always begins at a location number, which is exactly divisible by 16(16 = 10h, 32 =
20h, 48 = 30h etc.). The segment register contains the address where a segment begins, where the
offset register contains the offset of the data/code from where the segment begins. The segment
address is 00040h (20-bitaddress)

Here 8000h (16 bit address) can be easily placed in offset register (Regl), but how do we store the
20-bit 00040h address in 16-bit segment register? What is done is out of 00040h only the first four

Programming Expertise In C Near Far 81

hex digits 0004h (16 bits) are stored in segment register (Reg2). DOS can afford fo do this because a
segment address is always a multiple of 16 and hence always contains a 0 as the last digit. Therefore,
the first byte in memory is referred using segment : offset format as 0040h: 8000h. Thus, the offset
register works relative to segment register. Using both these, we can point to a specific location
anywhere in the IMB address space. If we want to store any variable in this address then internally
the segment register gets shifted by 4 bit left and the offset address is added to it forming
08040h.This number is then passed on to address bus, to locket the variable in the memory.

Near and Far

A near pointer is 16 bits long. It uses current contents of the CS (Code Segment) register (if the
pointer is pointing to code) or current contents of DS (Data Segment) register (if the pointer is
pointing to data) for the segment part where as the offset part is stored in the 16 bit near pointer.
Using near pointer limits your data/code to current 64KB segment.

The program shown in the slide has i as global variable and gets stored in DS. All the local variable j,

P> q and kb are stored in SS. Since kb points to a location outside the data segment we need to
declare it as a far pointer.

Programming Expertise In C Far Huge 83

Far Huge

In this lecture you will understand:

* What are huge pointers
* The size of far and near pointer
* How to find the size of base memory

84 Far Huge Programming Expertise In C

Far Pointers

Far pointer (32 bit) contains the segment as well as the offset. By using far pointer we can have
multiple code segments, which in turn allow you to have programs longer than 64 KB. Like wise,
with far data pointers we can address more than 64 KB worth of data. However while using far
pointers some problems may crop up as shown in the slide. Note that both 32 bit addresses stored in
variables s1 and s2 refers to the same memory location, we expect the if to be satisfied. However this
doesn't happen. This is because while comparing the far pointers using = the full 32 bit value is
used and since the 32 bit values are different the if fails and the else part gets executed as a result,
prints Bye.

This limitation can be overcome if we use huge pointer instead of far pointers. Huge pointer is
explained in the next slide.

Huge Pointers

Unlike far pointers huge pointer are 'normalized' to avoid these problems. Normalized is a 32 bit
pointer which has as much of its value in the segment address as possible. Since a segment can start
every 16 bytes, this means that the offset will only have a value from 0 to F (0 to 15). Normalizing is
done by converting the pointer to its 20-bit address then uses the left 16 bits for the segment address
and the rightmost 4 bits for the offset address. For example, pointer 500D:9407, we convert it to the
absolute address 594D7, which we normalize fo 594D:0007. Huge pointers are always kept
normalized. As a result, for any given memory address there is only one possible huge address
segment: offset pair.

Pointer Sizes

The program given in the slide illustrates that the size of a near pointer is always 2 bytes, whereas,
size of a far pointer and huge pointer is always 4 bytes.

How Much Memory

The size of base memory is stored in the BIOS Data Area at locations 0x413 and 0x414. The program
given in the slide reads this location and displays the amount i.e. size of base memory. Since, BIOS
Data Area lies outside data segment, pointer m in the program is declared as a far pointer and is
assigned the address 0x413. Then *m prints the actual value of base memory stored at given location.
Generally it is 640. If it is less than 640, then it is a sure shot sign of a virus present in the memory.

Programming Expertise In C Call By Value & Reference 85

Call By Value T Reference

In this lecture you will understand:

* What is the difference between call by reference and call by value
* How to return more than 1 value from a function

86 Call By Value & Reference Programming Expertise In C

What would be the output

In the program given in the slide, j is an int pointer, b is float pointer and dh is char pointer. Also, k
is a pointer to an integer pointer. Similarly ¢ is a pointer to a fleat pointer and eh is a pointer to a
char pointer. Observe carefully the figure given in the slide.

The pointer j stores address of i, b stores address of a and dh stores address of ch. Similarly, k a
pointer to an int pointer stores address of j, ¢ stores address of b and eh stores address of dh.

In the first printf() we have displayed the values in pointers j. b and dh .which happens to be the
address of corresponding variables. In the second printf() we have displayed values in pointers k.c
and eh which happens to be the addresses of pointer j.b and dh respectively.

In the next printf() we have displayed the size of variables i, a and ch which happens to be 2, 4 and
1.the size of an int, flaot and char respectively.

Slide Number 2

The size of any pointer is always 2 bytes. Hence on printing the size of pointers j, b and dh, k, ¢ and
eh the output for each gets displayed as 2.

**k becomes *(*(4000)) becomes *(1000) becomes 10

Hence **k prints 10 and similarly **c and **eh prints 3.14 and z respectively.

Slide Number 3

The program given in the slide tries to exchange the values of two variables through a function. In the
program, a and b are two integer variables with values 10 and 20 respectively. Their values are
printed and then a function swapv() is called. To this function we have passed the values of a and b.
This way of calling a function is known as call by value.

The function swapv() receives the values of actual parameters in formal arguments x and y
respectively. Then t is used as a temporary variable and being not initialized holds a garbage value.
The initial values are shown in the memory map.

Initially the value of x is stored in t i.e. t contains 10. Next the value 20 of y is stored in x. Now y is
assigned the value of t, which is originally the value 10 of x. On printing the values of x and y 20 and
10 gets printed, which are the interchanged values.

But as soon as the control returns to main(), X and y die and are not available in main(). Hence,
printing the values of a and b again results in printing 10 and 20 respectively.

Slide Number 4

The program given in the slide is similar to the one discussed in previous slide but with a slight
difference. Here, instead of passing value to the function we have passed addresses of variables. This
way of calling function is known as call by reference.

The addresses of a and b are collected in swapr() in int pointers X and y respectively. In t we are
storing the value at address stored in x i.e. 10 as x holds the address 200 of a. Next the value at
address stored in y (i.e. 20) is stuffed at address stored in x. Then the value of t is assigned to *y.
Back in main() the printf() statement prints the interchanged values of a and b, i.e. as 20, 10.

Slide Number 5

We know that a function cannot return more than one value. The program given in the slide shows
how to return more than one value through a function.

Programming Expertise In C Call By Value & Reference 87

Here we have called sumprod() with 5 parameters, values of variables a, b and ¢ and addresses of
variables s and p respectively. In the function we have calculated the sum of x, y and z and is placed
at an address stored in ss, i.e. in s. Similarly, we have calculated the product of x, y and z and is
placed at an address stored in pp. i.e. in p. Now, on returning back to main(), printf() would print
the sum and product of variables a, b and ¢ . In case of function called by reference, we can return
more than one value.

Programming Expertise In C Recursion 89

Recursion

In this lecture you will understand:

* What is meant by recursion
* How to find factorial value of a number using recursive calls

90 Recursion Programming Expertise In C

Advanced Features of Functions

Now let us move on to the next feature of functions, the Recursion.

Simple Form

Recursion means a function that calls itself. The corresponding slide shows a simple example of
recursion. From within the main() function there exists a call to the same function. On execution, the
program falls in an indefinite loop thereby printing ‘Hi” infinite number of times.

In the second example f() is being called recursively. The moral is that any function can call itself
thereby causing a recursion.

More General

The program given in the slide calculates the sum of individual digits of any given number (i.e. a
valid integer containing any number of digits).

The program accepts a number entered through keyboard. and calls the sumdig() function and passes
the number to it. The sumdig() function runs a while loop until n becomes zero. In every iteration
the last digit of the number is extracted using n % 10 and stored in d. Then d is added to s, which is
initially set to zero. The digits thus extracted is removed from the number itself using the statement n
=mn/10. The process continues until n becomes 0. Finally the value of s is returned to main(), where
it is stored in sum and printed out.

Slide Number 4

Let us now find out the sum of individual digits of a number using recursion.

In the program given in slide, the sumdig() function is replaced with the rsum() function. In the
rsum() function instead of a while() loop a recursive call is made until n becomes zero. Before each
recursive call the value of m is checked using if-else statement. The answer is then returned to main().

Now the complexity lies in the following statement:
s=d+rsum(n);

The detailed explanation of this program is given in the next slide.

Slide Number 5

Let us understand the working of rsum() function by considering n as 327. Now when rsum() is
called for the first time with value 327 the control enters the if block since n is not zero. The last digit
7 is extracted and stored in d. Then the value of n is reduced to 32 by dividing it by 10. The very next
statement,

s=d+rsum(n);

which tries to add d to the number returned by rsum(). But before adding d a call to rsum() is again
made but this time with value 32. Since we have removed the last digit form the number 327.n
becomes 32.

In the second call to rsum() function, 2 is extracted and stored in d. (Since n, d and s are local to the
rsum() function, each call to rsum() creates three new variables.) Then the value of n is reduced to
3. The digit d i.e. 2 should then get added, but before that, a call to rsum() is again made value 3.

Now 3 is extracted and the value of n is reduced to 0. The digit 3 should get added, but again first a
call is made to rsum() with value 0. This time the if condition fails and 0 is returned back from
where the call was made. The previous call was made from the statement:

Programming Expertise In C Recursion 91

s=3+rsum(0);
Hence this statement becomes:
s=3+0;

s becomes 3, which is returned back to the previous function from where this function call was made.
The same procedure is repeated in every previous call where a new value of s is calculated. When all
calls are resolved s ultimately contains the sum of individual digits.

Factorial Value
The program given in the slide uses a function to find out factorial value of a number passed to it.

In the factorial() function the number is collected in n and a while loop is run until n becomes zero.
The factorial value is calculated by multiplying n with p. In each iteration n is multiplied with p and
then it is decremented by 1. Hence in each iteration a decremented value of n is multiplied with the
previous value of p. If n is 3 the resultant factorial value in p would be 6.

Recursive Factorial

In the program given in slide, the factorial value is calculated by calling the function recursively
instead of using a while loop. The function name is changed to refact().

The refact() function is called recursively until n becomes 0. In each call before multiplying the
current value of n, a call is made to rfact() function with a reduced value of n (reduced by 1). This
continues till n is not zero. The moment n becomes 0, 1 is returned from where the function was
called. The returned value is multiplied with the previous value of n. The resultant answer is stored in
p. which is returned to the previous call. Ultimately p holds the factorial value that is returned to
main().

Note the tips, which you should keep in mind while writing code for a recursive function.
From the developer’s point of view, writing a recursive function is not at all easier. From the

efficiency point of view, recursive functions occupy more space as well as take more time to execute.
More space and time, because in each call all local variables are recreated.

Slide Number 8

The slide shows the game ‘“Tower of Hanoi’. If a program for this game has to be written then there is
no other way than recursion. The rings are to be moved from peg A to peg C and they should be
placed in the original order as it was in A. The movements of these pegs are shown in the slide. The
problem is left to you as an exercise.

Programming Expertise In C

Data Types

93

Data Types

In this lecture you will understand:

* Data types, their size and maximum and minimum range
* The type of integers, float and char data types

94 Data Types Programming Expertise In C

Data Types In C

The data types we have worked with so far are int, char, and float.

Type of Integers

The data type int is classified as a short int and a long int. The statement int i ; is equivalent to
short int i ; Thus, the keyword short is optional. An int reserves 2 bytes (16-bits) of memory, of
which most significant bit is reserved for sign and remaining 15-bits store the value. If sign bit is 0
then value stored in remaining bits is positive and if it is 1 then negative. When we write int i ; it is
treated as a signed value. Thus the maximum positive value of a signed short int with all 1's in value
bits is 32767 and minimum value is -32768.

The data type short int can also be unsigned. In this case most significant bit is not treated as sign-
bit. All bits are used to store a value. Thus the range of unsigned short int is from 0 to 65535.

Type of Integers

The data type long int is classified as long signed int and long unsigned int. The long int, reserves 4
bytes (32-bits) in memory of which the most significant bit is reserved for sign. Hence the maximum
value it can accommodate is 2147483647. For long unsigned int the range is 0 to 4294967295.

Types of Chars

The char data type is classified as signed char and unsigned char. A char reserves 1 byte (8 bits) in
memory. Again the most significant bit is reserved for sign hence remaining 7 bits are used fo store
value. Thus, the maximum value it can store is 127. The valid ranges for signed and unsigned char
are shown in the slide.

Types of Real

The real value in C is classified as—float. double and long double. The valid ranges allowed, the
size in terms of bytes and format specifiers that are used for these data types are shown in the slide.
Real types are always signed.

Three Questions

When we declare a variable as char, then by default it is treated as signed char. In the first statement,
'A' gets stored in ch, but in memory its ASCII equivalent (an integer 65) gets stored. This notifies that
even an integer can be stored in a char variable, whether positive or negative. Hence the second
statement in the slide is perfectly valid.

The printf() statement given in a code snippet in the slide display -128. This is because the
maximum value that a signed char can store is 127. The number 128 exceeds this range. On
exceeding the range, it moves to reverse side of the range, that is from right to left (positive to
negative) thereby generating number -128 which is the lowest number a signed char can store. Now
a question arises as why we have a bias of these ranges from minimum to maximum. This is
explained in next slide.

Slide Number 7

When 128 is stored in ch, first the binary equivalent of 128 is determined. Then it’s 1’s complement
is extracted, which is 01111111. The 2’s complement is then obtained from this value. The value thus
formed would be -128.

When 128 is stored in an unsigned char, then it is only converted to its binary equivalent and is then
printed.

Programming Expertise In C Data Types 95

Various Forms

The examples given in the slide shows the various forms of declaring variables.

What Is 365? & What Is 3.14?

In this slide, the default type of constants is explained. For 365, the type would be int. To make it
long add suffix L or 1. For unsigned add u and add suffix Iu or ul for unsigned long .

On the other hand by default real constant say 3.14, is treated as double. To make it float add suffix f
and to make long double add suffix L as shown in the slide.

Programming Expertise In C Storage Classes

97

Storage Classes

In this lecture you will understand:

What are different storage classes

Features of variable defined to have automatic storage class
Features of variable defined to have register storage class
Features of variable defined to have static storage class
Features of variable defined to have external storage class

* % ¥ ¥ W

98 Storage Classes Programming Expertise In C

Storage Classes In C

Let us see another feature of C, the Storage Classes. The definition of a variable consists of its type
and storage class.

A storage class signifies four things:

(a) Storage tells where the variable would be stored.

(b) The default initial value that a variable would hold if initial value is not specifically assigned.
(c) The scope of a variable i.e. in which functions the value of variable would be available.

(d) Life of the variable i.e how long would the variable exist.

There are 4 types of storage classes as shown in the slide. When a variable is declared without any
storage class, an automatic storage class is assumed by default.

Automatic Storage Class

The variable defined to have an automatic storage class, gets stored in memory, and holds garbage
value as the default initial value. The value of variable is accessible in the block in which it is
defined, i.e. the variable is local to block. The life of the variable is till the control is within the block
where it is defined.

Consider the program given in the slide. Here, the variable a is declared as an int without any storage
class, b is declared as an int with storage class as static and c is declared as an int with storage class
as antomatic. The contents are printed through the printf() statement. But on execution an error
‘Undefined Symbol automatic’ would get flashed, as there is no such keyword. To declare an
automatic variable use auto keyword, and then check out the output?

Now the program outputs garbage values for a and ¢ and 0 for b. This clarifies that the initial value
for a variable with no storage class as well for auto variable is always a garbage value. The static
variable holds 0 as its initial value by default (if not initialized).

Scope & Life

The slide explains that no two variables can have same name within the same block even with
different data types. Hence both the program segments shown in the slide would flash an error
message as ‘Redefinition not allowed’.

Look at the program shown in the slide. The variable a is declared within three different blocks with
values 10, 20 and 30. On compilation, the program gets compiled successfully and on execution
prints 30, 20 and 10. All the three variables used in the program hold same name, still the program
works how? The error would be flashed when the variables with same name are declared within the
same block.

However, if you try to execute the program given in a box in the slide, then would flash errors. This
is because the variable a is defined in function main() (i.e. within the main()’s block). So, it would
be available to main() only and not to the function f()’s block.

Death, But When?

In the program given in the slide, the variables i, j, k and 1, declared in main() won’t die when the
control goes to f() as the block is not completed, whereas, variables m, n declared in () dies as soon
as the control is returned or the block terminates.

Programming Expertise In C Storage Classes 99

Register Storage Class

A variable defined with register storage class, gets stored in CPU registers. All other aftributes except
storage, remains same as that of automatic storage class. Central Processing Unit (CPU) consists of
microprocessor (pp). Intel’s 8086 family of microprocessors has 14 CPU registers, each of 2 bytes in
size.

Be Judicious

Both the programs given in the slide are same except the declaration of i. In the first one, the variable
i is declared with storage class as auto and in the next one i is declared with storage class as register.
On execution, the first program would take longer time than the second one, as second one uses CPU
registers to access data. A value stored in a CPU register can always be accessed faster that the one
that is stored in memory.

The other attributes of register storage class are listed in the slide.

It must be carefully decided which variables should be declared with register storage class. In the
program given in slide, i and j are declared with register storage class. i is used as a counter in the for
loop, which needs frequent access for incrementing, hence needs faster execution. Hence the
judgment to declare it as a register is correct. But the variable j is used only once in the program.
Such variables should not be declared as register, since we have only 14 registers.

Static Storage Class

The variables declared with a static storage class get stored in memory, and holds 0 as default initial
value. The static variables are also local to the block in which they are defined. But, the static
variable persists (retain its value) between different function calls.

When to Use Static

Consider the program given in the slide. In this program p is an int pointer and f() is a function that
returns pointer to an int. The function f() returns the address of variable a, which is local to the
function block of f() and a would die the moment the function is over. In such a situation p would be
collecting address of variable that does not exist. To solve this problem we can define the storage
class of a as static. This is because, value in static variable is kept in memory when it is not active,
i.e. the variable takes up space in memory. Moral is, when we have to return a pointer from a function
then use static storage class.

External Storage Class

The program given in the slide demonstrates use of an external storage class. Variables declared with
an external storage class are the global variables, which are declared outside all the functions.

Here, in the program, a is an external (global) variable. The printf() statement in main() prints the
value of a as 10. Then function increment() is called in which a is incremented by 1 and its value is
printed as 11. Note that a is not declared in increment(), the global variable a gets used. Again by
calling increment(), the value of a becomes 12, since a is global variable. And on calling
decrement(), its value is decremented which becomes 11.

Declaration V/s Definition

All the statements and functions in this slide are similar to the ones given in the program discussed in
the earlier slide, except the declaration for a, which is done at the end below all the functions.

The statement extern int a ; given in functions like main(), increment() and decrement() is called
as a declaration, as no memory is reserved. It simply tells that variable a is an external (global)

100 Storage Classes Programming Expertise In C

variable which is defined somewhere else. Here it is defined at the end of the program by the
statement int a = 10 ;.

If we execute the program without inserting the statement extern int a ;, then it would flash errors.
This is because a is getting used in functions main(), increment() and decrement(). Even though a
is defined in the program, since it is defined below the program it would not be available to main()
and other functions. To make it available we must add a statement as extern int a ; in all these
functions. Saying extern int a, is simply declaration of variable. The variable is said to be defined
when memory is reserved for it. The variable a is defined through the statement

inta=10;
we say that the variable is defined. This kind of declaration and definition is similar to the function
declaration and the definition of the fumction.

Declaration V/s Definition

The program given in this slide is similar to the one given in previous slide, but with slight
modifications. The statement that defines variable a is placed just before decrement() function. Then
the statement that declares a as an extern can be dropped from decrement() function.

Declaration V/s Definition

This slide too contains the same program again with slight modifications. This time the statement that
define global variable a is placed above definition of function increment(). Then the statements that
declares a as an extern can be dropped from increment() and decrement() function.

Thus concludes that that use of extern inside a function is optional as long as we declare it outside
and above that function in the same source file.

Two Types Of Contflicts

Consider program given in the slide. Here, a is defined as a global variable with a value 10. Then in
main(), a is again defined as a local variable with value 20. Furthermore, in the inner block, a is
defined as a local variable with value 30.

Now the conflict is which value is printed through the printf() statement of the innermost block? It
prints value of a as 30, since a with value as 30 is most local and hence gets the priority. In absence
of the local variable, the value of variable defined in the outer block would have been printed.

The next printf() statement as explained in the previous case would print the value of a as 20.

Note that it is not allowed to write any executable statement after the closing braces of a function or
main(). Only declaration or initialization statements can be written.

Which is The Most Powerful

Dennis Ritchie has made available to the C programmer a number of storage classes with varying
features, believing that the programmer is in a best position to decide which one of these storage class
is to be used when. This slide briefly explains when and which storage class is the best suited.

Programming Expertise In C Preprocessor — 1 101

Preprocessor - 1

In this lecture you will understand:

What is meant by compiling a program

What is meant by linking

What is a preprocessor

Various types of preprocessor directives

Various preprocessor directives and their use

What are macros

What is the difference between macro templates and macro expansion

*O® O ® ¥ ¥ ¥ ¥

102 Preprocessor — I Programming Expertise In C

Compilation Options

The shortcut keys used for compilation, execution and debugging of a program are given in this slide
along with the function they perform.

Slide Number 2

You can trace the control flow, means the order in which the statements get executed, by using
function key F7. Initially on pressing F7, the control would get placed over main(). Pressing F7
again, would transfer control to the next statement. When the control comes on statement that calls
function display(), the control would get shifted to the body of function display(). (If you do not
want the control to trace the statements inside the function body you can press F8 when the control is
on the function call). Further pressing of F7 key would execute the function line by line. On
execution of the last statement of the function the control would return back to the printf() statement
following the call to display(). The execution would get terminated the moment control reaches the
closing braces of the function main().

This sort of tracing is also called debugging.

Slide Number 3

If you want to watch the value of a variable while debugging, press Ctrl + F7 by placing the cursor
below that variable. The variable would get added in the watch window. Start debugging and the
watch window will show the value of the variable.

A Closer Look

How a C program is compiled? A C program written using any text editor is called a C source code.
The text editor helps to type and edit text of the program. The preprocessor directives (#include,
#define etc.) in the source code get replaced with the corresponding code thereby expanding the
source code by the preprocessor. The compiler then converts the expanded source code into machine
code. The object code thus formed is then linked with the object code of the standard library through
the linker, which results in to an executable code. The object code (.OBJ) and executable code (.EXE)
files are placed in the output directory. Generally named as the WORKS directory.

What is meant by IDE and why it is used? IDE means Integrated Development Environment. IDE
like Turbo C/C++ includes an editor that helps to create text files, a preprocessor to expand source
code, compiler to convert source code object code, linker to link object code of source with that of the
standard library file. In Turbo C/C++ IDE all the functions like preprocessing, compiling, linking and
creating executable are integrated and done in one shot by pressing Ctrl + F9.

Types of Preprocessor Directives

There are four types of preprocessor directives as listed in the slide.

Preprocessor In Action

The program in the slide explains how a preprocessor works. In the program #include preprocessor
directive is added to include a file called ‘goto.c’. The file ‘goto.c’ contains the definition of function
gotorc(). On pressing Ctrl + F9. the preprocessor replaces the code of the file ‘goto.c’ in place of the
#include directive in the source code, which is thus the expanded source code. The source code of
file is say “prl.c’, then the expanded source code becomes ‘prl.i’.

The expanded source code on compilation result the object code in machine language. which consists
of the machine language form of gotorc() and main() function. If you execute this object code
(.OBJ) you will get errors as unresolved externals. Why these errors? This is explained in next slide.

Programming Expertise In C Preprocessor — 1 103

Linking
The errors are due to non-availability of the code for functions like elrser(), printf(), etc. The
machine code of gotorc() and main() is then linked with machine codes of clrser() and printf()

through the linker. After linking an executable file say ‘prl.exe’ gets created, which would get
executed successfully.

Your Wish

There are two ways of including a file in a program. When the name of the file is enclosed in double
quotes, then it is searched in both the current directory as well as the specified list of directories as
mentioned in the include search path. The include path in Turbo C/C++ IDE is available in the
‘Options’ menu’s ‘Directories’ item as shown in the slide (“Alt o™ shortcut key).

When the filename is enclosed within a pair of angle brackets (<>), then the file is searched only in
the specified list of directories (i.e. include path).

Macro Expansion

Let’s now understand preprocessor directives in detail. The macros are defined using #define
preprocessor directive.

In the program given in the slide, LOWER and UPPER are called ‘macro templates’, whereas, 1 and
10 are called their corresponding ‘macro expansions’.

These macros are used as lower and upper bounds in the for loop. On compilation, the for loop
would get expanded as shown in the slide after preprocessing. The macro name has been replaced
with their expansions 1 and 10.

Programming Expertise In C

Preprocessor — 11

105

Preprocessor -11

In this lecture you will understand:

*
#
*
*

How to create macros with arguments

When do we need condition compilation

How to make conditional compilation possible
Various miscellaneous preprocessor directives

106 Preprocessor — 11 Programming Expertise In C

Macro Expansion

In this slide a macro PI for the value of pie is defined and used while calculating the area a of the
circle. On preprocessing the statement for calculating the area would be expanded as shown in the
slide.

Instead of this we could have declared a variable for VALUE OF pie. Is there anything wrong with
it? Even though 3.14 is such a common constant that it is easily recognizable, there are many
instances where a constant doesn’t reveal its purpose so readily. Secondly, if a constant like 3.14
appears many times in the program. This value may have to be changed some day to 3.141592.
Ordinarily you would need to go through the program and manually change each occurrence of the
constant. However, defining PI in a #define directive, only needs to make one change, i.e. in the
#define directive itself as shown below:

ftdefine PI 3.141528
Beyond this the change will be made automatically to all occurrences of PI before the beginning of
compilation.

Don’t Remember Constants

Remembering long constants is difficult. However, the names used for such constant are easy to
remember. Hence use #define for such constants. In the slide the sketch of the program is shown that
use the constant PLANK. In the last statement instead of PLANK, simply PLAN is written which
would be detected while compiling the code. On the other hand if the constant contains any mistake,
that cannot be identified by the preprocessor or compiler. Hence using Symbolic constants is safer.

Macros are of two types:

- Simple Macros
- Macros with Arguments

We have already discussed simple macros.

Macros With Arguments

The program given in the slide makes use of both, simple and macro with arguments. The macro PI
is a simple macro and AREA(x) is a macro with arguments. While defining a macro with argument
space should not be present between the macro name and the opening parentheses.

The statement,

a=AREA(r);

would be expanded as,
a=314"r"r;

The statement,

a=area(r);

would call the function area().

Macros are faster than function. This is because, in a macro call the preprocessor replaces the macro
template with its macro expansion. As against this, in a function call the control is passed to a
function along with certain arguments, some calculations are performed in the function and a useful
value is returned back from the function. This process takes time and would therefore slow down the
program. Any number of variables can be used in the argument as shown in the slide with A (x, v, z).

Programming Expertise In C Preprocessor — 11 107

Macros With Arguments

In the slide a macro S with arguments to determine the square of a number is defined. In the program
several calls are made to it. The statement,

i=S(4);

would be expanded as

i=4%4;

It’s all right but if expressions such as 2 + 2, 3 + 1, 1 + 3, or ++n are used, then they would be
expanded as shown in the slide and would give wrong results.

We can see the expanded source code using ‘CPP.exe’ command (present in TC\BIN directory). To
do so, save your program and quit Turbo C. Change directory to C:\TC\BIN and run the command as
shown in the slide. A file with extension ‘I’ would be created which contains the expanded source
code. Using DOS command ‘Type’ you can view the contents of “.I” file.

Solution

Now the solutions to the problem that discussed earlier is given in this slide. The solution is either the
parameter should be placed within the parentheses while calling the macro or the parameters in macro
expansion should be placed within parentheses as shown in the slide.

Conditional Compilation

Sometimes we need to compile some part of the code and discard some other code. What if the
scanf() statement shown in the right side of the slide should be used based on a condition? This is
shown in the left side of the slide.

To compile the code conditionally, the preprocessor directives #ifdef and #endif are used as shown in
the slide. The preprocessor directive

#ifdef YES

read as ‘if YES is defined through #define then compile the code till #endif is encountered’. Hence
as a solution define YES above the main() so that the code would be compiled. Otherwise to
compile the code simply delete #ifdef and #endif preprocessor directives.

Miscellaneous Directives

In the program given in slide, YES is defined as a macro before main() with value 10 and accessed
in the first statement of main(). Next, it is redefined as 20. Now on the usage it will be replaced with
20. This tells that redefinition of a macro is allowed.

Macros cannot be used within the double quotes, if used it won’t get replaced with macro expansion. The
macro can be undefined through the preprocessor directive #undef. In the slide YES is undefined, which
undefined macro YES. The macro name cannot be used to declare variables. as their scope is global.

#pragma

#ipragma is another miscellaneous directive. #pragma directives are special compiler directives.
inline allows writing assembly language instructions within the C source code as shown in the slide.
In this case the program cannot be compiled or traced through the keys shown in the slide.

Programming Expertise In C Arrays 109

Arrays

In this lecture you will understand:

* What are arrays and how to define them
* How to declare and initialize array
* How elements in an array are stored

110 Arrays Programming Expertise In C

How Much C

The keywords related to data types, control instructions, and storage classes that we have covered so
far are listed in the slide.

Arrays

Let us now move towards the advanced features of C— Arrays.

To calculate percentage marks of 10 students for three subjects, three variables m1. m2, m3 are
declared. And through the for loop marks of 10 students are accepted and their percentage is
calculated.

But if the percentage of say 3™ student is required, it cannot be made available once the for loop is
over. The last printf() statement prints the percentage of last student. So how can we retain the
earlier calculated values?

Choices Available

The choices available for handling case discussed in earlier slide are:

— Use the number (10) of variables to hold each value
— Use one variable, capable to hold the specified number of values

Obviously the second alternative is better. A simple reason for this is, it would be much easier to
handle one variable than handling number of different variables. Such a single variable is called an
array. An array is a collective name given to a group of ‘similar quantities’. These similar quantities
could be percentage marks of 100 students, or salaries of 300 employees, or ages of 50 employees.
What is important is that the quantities must be ‘similar’.

Nothing Different

Each member in the group i.e. array is refereed to by its position in the group. For example, consider
the group of percentage marks obtained by 10 students given in the slide.

If we want to refer to the 1%, 3, 6™ and 10™ number of this group, then the usual notation used (as a
subscript as shown in the slide) is per;, pers, pers and per;, respectively. In general the i member can
be referred as per;. However, using this form the value cannot be printed on the text screen. Hence the
subscript should be written in the parentheses as per (i) or in square brackets as per[i]. In C square
bracket notation is used.

Slide Number 5

The program given in the slide the same program that calculates percentage marks for 10 students,
but is written with the use of an array per. While declaring array variable the number of elements it
can hold is mentioned within a pair of square brackets following per as per|[10]. In the for loop the
percentage of each student is calculated and stored in the i location of per through perf[i]. Lastly all
the percentages of the students are printed through another for loop.

As the row and column position of screen begins with 0. in C, the counting of elements in an array
also begins with 0 instead of 1. Hence, lower and upper bounds of array used in for loop should be
subtracted by 1 (i.e. they should be 0 and 9 respectively).

Initializing Arrays

Observe carefully the program given in the slide. Note the way arrays a[], b[] and ¢[] have been
declared. If the array is initialized where it is declared, mentioning the dimension of the array is
optional as done in case of array a[] (in the program given in the slide). If the array is not initialized

Programming Expertise In C Arrays 111

where it is declared then mentioning its dimension is compulsory. While initializing, it is allowed if
the number of elements used for initialization is less than the dimension given for the array.

In the program, after declaration, the sizes of arrays a[] and b[] are printed. As a[] is initialized with
only 5 integer elements the size is 5 x 2 bytes. As b[] is declared to hold 10 int elements, the size is
10 x 2. After this the first element of a[] and b[] are printed which prints 7 and a garbage value as
b[] is not initialized. Next, values the higher elements for ¢[] are accepted using scanf().

An element of an array can be initialized or assigned to with an expression as evident from the last
two statements of the program.

Moral

This slide lists a few points about an array, which have been confirmed by the programs of array
discussed so far. Let us now see how arrays are different from normal variable.

Storage

Arrays are different with respect to the normal variables in respect of storage in memory. Normal
variables on declaring are stored at discrete locations as shown in the slide.

On the other hand, arrays in memory are stored in adjacent or contiguous locations. The program
given in the slide confirms this, where the addresses of array elements are printed using the printf()
statement within the for loop. Thus, an array is a collection of similar elements and these elements
are always stored in adjacent memory locations.

Bounds Checking

In the program given in the slide, an array a [] confain 5 elements. But in the for loops. one used for
some calculations on the elements of array, and the other to print the values, the upper bound used is
40. The upper bound used should be 4, but still the program works.

The program works because in C there is no check to see if the subscript used for an array exceeds
the size of the array. Data entered with a subscript exceeding the array size will simply be placed in
memory outside the array, probably on top of other data, or on the program itself. This will lead to
unpredictable results, to say the least, and there will be no error message to warn you that you are
going beyond the array size. In some cases the computer may just hang. Thus, to see to that we do not
reach beyond the array size is entirely the programmer’s botheration and not the compiler’s.

So...

Finally the points regarding arrays that we have seen so far are listed in the slide.

Programming Expertise In C Sorting 113

Sorting

In this lecture you will understand:

* Various sorting techniques

114 Sorting Programming Expertise In C

Selection Sort

To arrange the elements of a list in a particular order (ascending or descending) is called as Sorting.
There are various sorting methods. Of these, a method called Selection Sort is used in the program
given the slide to arrange elements of array.

In this method, to sort the data in ascending order, the 0™ element is compared with all other
elements. If the 0 element is found to be greater than the compared element then they are
interchanged. So after the first iteration the smallest element is placed at the 0 position. The same
procedure is repeated for the 1% element and so on. This can be understood from the figure given in
the slide.

Thus, if the number of elements to be arranged is 5 then there would be 4 (5 - 1) passes. Hence in the
program i (loop counter for outer for loop) is varied from 0 to 3 and j (loop counter for inner for
loop) is initialized with a number one next to i (i + 1) and comparison is made using if between a[i]
and a[j] and values are interchanged, if the condition is satisfied.

Bubble Sort

The program given in the slide uses Bubble sort method to arrange elements in ascending order. In
this method. to begin with the 0" element is compared with the 1*' element. If it is found to be greater
than the 1% element then they are interchanged. Then the first element is compared with the 2
element, if it is found to be greater, then they are changed interchanged. In the same way all the
elements (excluding last) are compared with their next element and are interchanged if required. This
is the first iteration and on completing this iteration the largest element gets placed at the last
position. Similarly, in the second iteration the comparisons are made till the last but one element and
this time the second largest element gets placed at the second last position in the list. As a result after
all the iterations the list becomes a sorted list. This can be understood from the figure given in the
slide.

Sorting Procedures

There are various sorting techniques as listed in the slide. Among these the order of Selection sort
and Bubble sort is n”i.e. for 10 of elements, 100 comparisons are made. The Quick sort gsort() is the
fastest sorting procedure since it is implemented through recursion and its order is logyn i.e. for 10
number of elements only 3 comparisons are made.

Quick Sort At Work

The program given in the slide uses standard library function gsort() to arrange elements of array.
The call made to gsort() is.

qsort (a, 5, sizeof (int), fun) ;

where,

a is the base address of the array

5 is the number of elements in the array

sizeof (int) is the size of each element in the array

fun is a user-defined function that compares two elements and returns a value based on the
comparison

Through the call made to gsort(), it is clear that only writing a comparison function is the
responsibility of the programmer.

Programming Expertise In C

TwoD Arrays — 1

115

TwoD Arrays - 1

In this lecture you will understand:

*
#
*
*

How to access array using pointers

How and which arithmetic operations be performed on pointers
How to pass elements of array to a function

How to pass array entire array to a function

116 TwoD Arrays - I Programming Expertise In C

Another Form...

The slide shows one more way of accessing array elements.

In the program given in the slide, an array a[] is initialized and it is assumed that its base address is
102. Address of 0%, 1** and 2™ element of the array is printed using the ‘address of” operator (&).

On printing a, a + 1 and a + 2 same output is displayed. Next, the value present at the address
locations is printed using ‘value at address’ operator (*). This method of referring array elements is
called as Pointer Notation and the earlier one is called as Subscript Notation.

More Formes...

This slide shows all the possible ways in which an array element can be accessed.

When we say a[i], the C compiler internally converts it to *(a + i). Thus the notations, like *(i+a
), i[a] are same. The program shown in the slide proves this.

Flexible Arrays

Saying 5[a] is equivalent to a[5], but only while accessing the elements. While declaring this array
saying int 5[a] is not allowed.

While declaring an array. in place of dimension, a variable cannot be used. It must always be a
positive, non-zero, an integer constant. A macro as shown in the slide is allowed.

Pointer Arithmetic

The program given in the slide shows how arithmetic operations are carried out on pointers.

Here, three variables and their respective pointer variables of the type float, char and int are
declared. Addresses of the variables are stored in their respective pointer variables. The figure in slide
shows the variables their values and addresses and also the contents of pointer variables after their
initialization. Next, the addresses hold by pointer variables are printed through the first printf().

Now the pointer variables b, dh and j are incremented. On printing the contents of these pointers we
get the output as 1012, 2010, and 6004 (for b, dh and j respectively). It is clear from this output that,
the float pointer b, gets incremented by 4 bytes, char pointer dh, gets incremented by 1 byte and the
int pointer j, gets incremented by 2 bytes.

Next on adding 3 to b it gets incremented by 12 i.e.(4 * 3 bytes). on adding 8 to dh it gets
incremented by 8 i.e. (8 * 1 bytes) and on subtracting 3 from j it gets decremented by 6 i.e.(3 * 2
bytes).

The following are some of the legal pointer arithmetic allowed in C language:

— anumber added to a pointer results into a pointer
— anumber subtracted from a pointer results into a pointer
— apointer subtracted from a pointer results into a number

Access Using Pointers
The program given in the slide shows how to access an element of an array using pointers.

Here, an array a is initialized and it is assumed that its base address is 102. With the statement p = a,
we are storing base address (102) of the array a in p which is same as the address of the 0™ element.
Saying *p gives value present at the address 102 which is 7. On incrementing p by one, it points to
the next element of the array (incremented by size of an int, i.e. 2 bytes) and hence p gives the value
at 104.

Programming Expertise In C TwoD Arrays — 1 117

Next, the base address is restored in p by assigning a and a for loop is used to print all the elements
of the array using pointer p.

The two statements, *p and p++ can be clubbed together.

If we write *p++, first operation will be *p and then p++. If we write as *++p, firstly p will be
incremented (++p) and then value at address in p is will be displayed.

If we write ++*p. the value present at p gets incremented and not the address.

[] For Notation

The brackets [] used while accessing elements of array, is just a notation to show that this variable is
an array. Otherwise, the array elements can be accessed in any of the four ways as shown in the
program given in the slide.

The point to be noted here is that when we use expression like p[i] ori[p] or * (p+i)or * (i +p).
then one of them (either i or p) can be a pointer or an array, the other should be an int, but both of
them can never be arrays. In other words if p is an array then i should be an int, or if p is a pointer
then i should be an int.

Changing Array Address

In the program given in the slide, a is an integer array containing 5 elements and p is pointer to this
array. Let us assume the base address of array a as 102. Then through first for loop we have printed
the values of array a using pointer p. In every iteration of this loop, we have incremented p to make it
point to the next element of array. In the second for loop also we have tried to print the values of
array, not using pointer p, but using the array variable a itself. However, on executing the program
the second for loop flashes an error. The error is in the statement a++. a being an array, just
mentioning a gives it’s base address. Now, saying a++ (i.c. a = a + 1) means we are trying to change
the base address and that's not allowed.

Always remember that the base address of an array can never be altered. Therefore, any arithmetic
involving name of an array is wrong. Hence, the statements given in the slide, which perform
arithmetic operations using array name, are all invalid.

Passing Array Elements

In the program given in the slide, elements of an array are passed to function in two different ways. In
the first way, all elements are passed to the function display(). In the second way, through a for loop
only one element i.e. i element is passed to function display1().

We cannot prefer the first way, because if an array contains more elements say 100 elements, then it
would become tedious. The second way is good, but it affects the speed of execution due to number
of function call overheads.

Passing Entire Array

The program given in the slide, gives a better way of passing elements of an array to a function.
Instead of passing the elements, the entire array can be passed to a function by passing the base
address of the array. The display2() function implements this and array elements are accessed using
pointer notation. But this is not the generalized form, because in the for loop used in display()
function, the upper bound is given as 4. If we add or remove some elements from the array, then we
need to change the upper bound in for loop of display2() function also. This is needed because
display2() doesn’t know the size of array. Hence the better way is to pass the size of the array also
the function, when entire array is being passed. This is what is done in display3() function. It
receives base address of array a and the size (i.e. upper bound) of the array. The condition is for loop
of display3() should be i <=mn and i <=4.

118 TwoD Arrays - I Programming Expertise In C

So always remember, if an array is to be passed to a function both it’s base address and size should be
passed.

Programming Expertise In C TwoD Arrays — 11 119

TwoD Arrays - 11

In this lecture you will understand:

* How array elements are arranged in memory
* How to create 2-D arrays

* How to represent elements of 1-D and multidimensional array using pointer

120 TwoD Arrays — I Programming Expertise In C

Two Dimensional Arrays

So far we have explored arrays with only one dimension. It is also possible for arrays to have two or
more dimensions. Let us now see a program that uses a two-dimensional array. A two-dimensional
array is nothing but an array of one-dimensional arrays.

In the program, a 2-D array a is initialized. The first dimension i.e. number of rows is optional. But
second dimension i.e. column dimension is necessary. A comma should separate each element. The
braces to separate the rows are optional. Saying a[2][4] specifies 21 present at 2° row and 4™
column. Then we have found out the size of array a using sizeof() operator and displayed the base
address by providing the name of the array. To print all the elements of a two-dimensional array we
need two for loops. one for row and the other for columns.

This is an interesting fact that for any n-dimensional array as shown in the slide, first dimension is
optional but rest is compulsory.

Find Biggest
Here is the program to find the biggest number present in the 2-D array.

It is assumed that the element a[0][0] is the biggest element and is stored in big variable. Then
individual element is compared with big. If the element is greater than big, then big is replaced by
this element. Its row-column position is also stored in r and ¢ respectively. Finally, the biggest
element big thus, found out is printed.

On your part, try to find out the second biggest number and its position.

Slide Number 3

When a matrix, i.e. 2-D array gets stored in memory all elements of it are stored linearly. The figure
given in the slide shows how elements of a 2-D array get stored in memory. This arrangement is
called Row Major arrangement, where, elements are stored row-wise. Thus, if a 2-D array contain 3
rows 4 columns, then the elements of 0® row get stored, then gets stored the elements of 1* row, and
lastly, the elements of 2™ row gets stored.

On executing the program given in the slide, to your surprise, you would find, most of the answers
are wrong except the last printf(). Let’s see where we went wrong.

Slide Number 4

Consider the code snippet given in the slide. Let us assume the base address of one-dimensional array
b is 402. Saying b in printf(), prints its base address 402 and *b prints the value as 7. If an integer
variable i is initialized with value 5, then on printing value of i, prints 5. The point is any variable
prints what it is holding. However, this is not the case with a two-dimensional array.

If ais a 2-D array, simply mentioning a in printf() prints the base address of the 2-D array and even,
*a prints the base address, but of the first one-dimensional array (i.e. the base address of 2-D array
itself) because that’s what it is holding.

A 2-D array a[3][4] of integers can be thought of as setting up an array of 3 elements, each of which
is a one-dimensional array containing 4 integers. a[0] gives the address of 0™ one dimensional array,
a[1] gives the address of the first-one dimensional array and so on.

Slide Number 5

Now you can appreciate the results. a prints 502, *a prints 502. a + 0, a + 1, a + 2, prints addresses
of 0™, 1* and 2™ row i.e. 502. 510 and 510. so a[0]. a[1]. a[2] too prints the same.

Programming Expertise In C TwoD Arrays — 11 121

a[0] + 1. a[1] + 2. a[2] + 3 prints the addresses of 1. 2°¢ and 3™ element of 0* , 19 and 2™ rows.
By placing * before them gives the corresponding values of the elements. Lastly, the same elements
are printed using bracket notation in which row and column indexes are specified.

Moral

This slide shows the subscript and pointer notation for referring an element of array.

3 Ways

The program given in the slide uses three ways to access element of a 2-D array. It also shows the
ways in which i®, j®, k™ element of a 3-D array can be accessed. Thus, for a multidimensional or

more specifically n-dimensional array, there exists n+1 ways of referring its elements.

Different

Consider the program given in the slide. Note the declaration of pointer p and q.

*p[4] is an array of 4 pointers. Let us assume that the base address of p is 130. Then q is a pointer
to a one-dimensional array of 4 elements. The p[] array is then initialized with the addresses of some
elements of array a. Then the base address of the array a is stored in an integer pointer r and in q.
Incrementing both the pointers by 1, r prints 504 but q prints 510, that is amusing. The result is so
because q is a pointer to an array of 4 integers. Therefore on incrementing it points to next array
starting at 510. On the other hand r is a pointer to an int holding address of element of 0® row. 0™
column of array a. Hence, on incrementation, it points to the next 2 bytes which happens to be the
address of element of 0 row, 1% column.

Programming Expertise In C Application of Arrays —I 123

Application of Arrays - I

In this lecture you will understand:

* How to create 2-D arrays
* How to represent elements of 1-D and multidimensional array using pointer

124 Application of Arrays — I Programming Expertise In C

Applications of 2-D Arrays
This slide lists a few applications where a 2-D array can be used.

A 2-D array, which is also called a matrix, can be used to perform matrix operations like, addition,
multiplication, determinant, transpose, inverse, etc.

It can also be used to write program for the famous ‘Eight Queens’ problem that one can play on a
chessboard, as shown in figure given in the slide.

In this game 8 queens (8 pawns can be used as 8 queens) have to be placed on an 8 by 8 chessboard
so that none can take the other. Knowing that the queens can move in horizontal, vertical and
diagonal directions, it is a challenge of sorts to come up with such a combination. The program for
this is given in next slide that provides more than 90 different ways to manage this, only one of which
is shown in figure given in the slide.

The Program

The solution to the program is given in this slide.

Knight’s Tour

In a game called Knight’s tour as shown in the figure given in the slide, we can make use of 2-D
array.

Earn ATV...

Often in newspaper we find advertisements that claims you can “Earn a TV or an Audio System”, etc.
if you can solve the puzzle like the one given in the slide. To write a program to solve such puzzles,
we need to use a 2-D array.

Tic-Tac-Toe

The concepts, working and features of 2-D array discussed so far are enough to develop a game Tic-
Tac-Toe (shown in the slide).

Programming Expertise In C Application of Arrays —II 125

Applications of Arrays - 11

In this lecture you will understand:

* How to create a 3-D array
* Applications of 2-D array

126 Application of Arrays - II Programming Expertise In C

Puzzle

Let us now write a program for a puzzle game shown in the slide.

To begin with we have initialized a 2-D array a as shown in the slide. This array has been defined
globally so that it can be accessed in all the user-defined functions called in main(). The boxes(). a
user-defined function has been called to display the grid as shown in the slide. The display(), again a
user-defined function has been called to display the numbers in that grid. The graphical characters
required to draw box are shown in the slide.

Slide Number 2

The display() function is discussed in the slide. The row r and column c are initialized with the 11
and 21 (because, the location 10™ row, 20™ column is used to display graphical character for left-most
fop corner).

Now two for loops (one for row and other for column) run through which the cursor is placed at
specific position using gotorc() (whose function definition is present in ‘goto.c’ file) and the
elements of the array a are printed if the value is not equal to zero. If it is then two blank spaces are
printed. For the next element to print at the appropriate row and column position, r and c are
incremented by 2 and 3. In the outer loop again fo restart printing from the same column, ¢ is reset to
21,

Slide Number 3

Now after displaying the boxes and numbers, to move the numbers in the puzzle the arrow keys
should be tackled. The scan codes of the arrow keys are given in the slide. Accepting a character
through scanf() or getch() simply receives the ASCII equivalent and not the scan code. The ASCII
values of arrow keys are zero.

The scan code of the keys of the keyboard can be refrieved using getkey() function defined in
‘goto.c’ file. This is used in the program to receive the scan codes of the keyboard.

After collecting the scan code of the key, it is passed to the switch statement for the cases to be
handled. Here code to handle down arrow key (80) is given. On pressing down arrow key, 15 should
come down (where 2 blank spaces are placed) and place where 15 was should be replaced with
blanks. Hence swapping between these corresponding elements is performed and again display() is
called to reflect the changes on the screen.

Slide Number 4

The case shown in the earlier slide is specific. To make it general initially r and ¢ should be
initialized with 3 (since, the row and column dimension of last element of the array i.e. 0 is 3, 3
respectively). After swapping, the value of r is decremented by 1 because 0 is now at position 2, 3.
After this display() is called to reflect the changes.

Since we are decrementing r, when it becomes zero it should not further get decremented. Hence,
before interchanging we have checked whether r is non-zero. If r becomes 0 then we are simply
playing a beep sound. This we have done in the else part.

Slide Number 5

On similar lines, when up arrow key (72) is pressed the element at the row below element 0 (or below
row of blank space) should come up and the blank should move down. The code given in the slide
handles case for up arrow key. Here, as the blank goes down the row r is incremented. Hence a
condition is checked that whether 1 is equal to 3. If it is then again a beep sound is played. Rest of the

Programming Expertise In C Application of Arrays —II 127

code is straightforward. Try the remaining two cases yourself, where column c is fo be decremented
or incremented depending on whether left or right arrow key is pressed.

Slide Number 7

After the numbers are shifted according to the arrow keys pressed, a check should be made to verify
whether the elements of the array a are linearly arranged or not. This we have done by calling again a
user-defined function check(). Also to play the game the i.e. to shift the numbers till they don’t get
arranged in linear order, the whole logic is placed inside an infinite while loop.

Slide Number 8

Let us now discuss 3-D arrays. Note the way a 3-D array a is initialized in the slide. As discussed
earlier, the first dimension of any dimensional array is optional. hence the first dimension is omitted.

A 3-D array shown in the slide, consists of three sets each of which is again a two dimensional array.
The first printf() of the program given in the slide, prints the size of a as 48 (24 * 2) and a[2][1][3]
prints the value present in the second set, first row and second column i.e. 100. In the next printf(),
the same value is printed using the pointer notation.

In the last printf(), a prints the base address of the set (i.e. 3-D array), *a prints base address of row,
a prints the base address of the column and finally *a prints the value present at the 0% set, 0
row, 0™ column which is 3.

Programming Expertise In C Strings — I 129

Strings - 1

In this lecture you will understand:

* What are strings

* How to create strings

* How to input a multiword string

* Difference between printf() and puts()

130 Strings —I Programming Expertise In C

Strings

So far we have seen numeric arrays. Let’s switch over to the character arrays. In C character arrays
are treated as strings. A string is a character array that is terminated by a null ("\0') character.

The program shown in the slide contains a string name initialized with character constants, as type is
char. The way we printed numeric arrays, character arrays can also be printed in the same way. In the
slide it has been done using a for loop which needs the number of elements to know when to stop the
for loop.

Moreover, a string is a one-dimensional array of characters terminated by a null (\0°). So, instead of
relying on the length of the string to print its contents, a better way is to traverse a string till end of
the string i.e. “\0” has not met. This is what we have done in the while loop. Note that printing
character and incrementing i can be done using a single statement as name[i++].

Two More Ways

Two more ways are there to print the contents of string. The ASCII equivalent of null “\0° is zero.
Hence instead of checking for the null (\0”) character, we can check for 0 as well. This is what we
have done in the first while loop in the program given in the slide.

Also we know that false value (zero) in the while statement terminates the loop, hence, only name| i
] is mentioned in the condition of second while loop. name] i] used in while gives the ASCII value
of i™ character. When namel[i] reaches “\0’, the condition in the while gets replaced by 0 thereby
terminating the loop.

Which Is Best?

It is better to use for loop when number of iterations is known, i.e. when a loop has to run for finite
number of times then for loop should be used. In case of handling strings, it is not known how many
iterations are required to reach the end of the string, hence the better way is to use while loop. The
slide shows three ways in which while loop can be used to access characters of a string. The best way
to print the contents of string is to use printf() with %s as format specifier. Lastly, when we pass an
entire array of infegers to a function, we need to pass the size of the array in addition to the base
address of the array. However, in case of a string we need to pass only the base address to the
function, because the end of the string can be determined by null terminating character “\0°.

Multiword Strings

The character array str1 is initialized with character constants and is terminated by “\0’ and str2 is
initialized with the string of characters enclosed within double quotes, where ‘\0* character is not
explicitly specified, assumed by default.

On printing the sizes of the strings, both prints 7, the total number of characters present in the string.

str3 is accepted through scanf(). Supplying a multiword string say “Rahul Sood” and on printing it
prints only “Rahul”. This is due to scanf(), which treats space as a separator for input. Now again
same string is accepted through gets() and printing it through printf(), it prints “Rahul Sood”. str3
can be printed through the puts(), counterpart of gets() to print strings.

Note the constants 3. 3.0, ‘3" and “3” are different, where 3 is an integer, 3.0 is a float value, ‘3’ is a
character constant and “3” is a string with \0".

Programming Expertise In C Strings — I 131

Which Is Better?

A comparison between printf()/scanf() vs puts()/gets(). Through printf() or scanf() a number of
strings can be printed or accepted. On the other hand, puts() or gets() prints or accepts only one
string at a time.

When number of strings are to be printed or accepted use printf()/scanf(). Moreover printf() is
capable of printing multiword strings as well as other types using format specifiers.

When single multiword strings are to be printed or accepted use puts()/gets().

Think Differently

A string str is initialized with “Sanjay”. In pointer p, base address of str, let’s say 401, is stored. On
incrementing p, it will point to the next character in the string. Using this concept the string is printed
character by character through a while loop using the pointer p.

Output?

Now when a string is passed to printf(), it is accepted in a char pointer and printed using pointer
notation as described. It is clear that in p only the base address of “Hello™ is stored.

Now suppose an expression as in the second printf() is used then only “hanical” would be printed.
Suppose the base address of "Mechanical" is 100. Now the expression 2 + 3 % 2 implies 3. hence

3 + "Mechanical" => 3 + 100 => 103

Starting from 103, the string "hanical" is printed. On similar lines, printf() prints the strings passed
to it along with list of variables.

Programming Expertise In C Strings — II 133

Stnings - 11

In this lecture you will understand:

How to find length of a string

How to copy one string to another

How to concatenate two strings

How to convert characters in a string from lower to uppercase
How to use standard library functions for working on strings

* % ¥ ¥ W

134 Strings — 11 Programming Expertise In C

Slide Number 1

Length of a string can be found by traversing through the string character by character. To find the
length of a string a function xstrlen() is written. The length of strings str1 and str2 are received in 11
and 12 as 6 and 9 respectively, as the count of visible characters in the strings.

The xstrlen() function also returns the length when a constant string is passed to it.

In xstrlen(), a while loop is run till end of the string is not met. Through this loop using character
pointer p, the string is traversed character by character and count is incremented. Lastly count is
returned as a length of the given string.

Copying Strings
The contents of one string can be copied into another string. To copy string pointed to by strl to st12

saying str2 = strl ; would lead to an error. This is because strl represents the base address, which is
a constant and cannot be changed.

To carry out copy operation xstrepy() function is used which accepts base address of the target and
source string respectively.

The source string is traversed till “\0” is not met. In every iteration of while loop a character of source
string (pointed to by s) is inserted into the target string (pointed to by t). After copying the entire
source string into the target string, it is necessary to place a “\0’ into the target string, to mark its end.

Note that it is our responsibility to see to it that the target string’s dimension is big enough to hold the
string being copied into it.

More Ways...

More ways of copying source string into target string are shown in the slide. The first way is simple
one, which we have already discussed, in the earlier slide. In the second way, in while loop it is
checked whether *s is \0°. If it is not, then copying of the character to the target string (pointed to by
t) and shifting t and s to the next character of the corresponding strings is done through the statement,

¥ = *g4-;
Here, first *s is stored in *t and then t and s are incremented.

In the third way, note the condition given in the while loop. While executing the expression *t4++ =
*s++, first *s is copied into *t, the value *t is then checked for “\0’. The order of evaluation of the
statement is shown in the slide. The moment *s becomes “\0’, the loop terminates as *t also becomes
0 ("\0").

Concatenation

The process of adding one string at the end of another string is called concatenation. The target string,
which is going to hold another string, should be made big enough. As strl is going to hold other
string str2, its size should be more say 20 for example.

We have called xstrcat() function for concatenation. This function accepts base address of target and
source string. Initially the target string pointed to by t is traversed till \0’. Then as done in case of
copy operation, the source string pointed to by s is traversed and copied into target string (pointed to
by t) piece-meal, character by character. Lastly “\0” is added to t as a null character.

Shorter Version

A shorter version of the same xstrcat() can be written using the standard library function strlen()
and strepy() which can be used by #including ‘string.h’.

Programming Expertise In C Strings — II 135

The pointer to target string t is made to point to the end of the string by adding length of the string
(i.e. target string) to it. The length is extracted by calling strlen() function. Then the source string
(pointed to by s) is copied to the target string pointed to by t using strcpy() function.

Concatenation

Some more ways of concatenation operation have been shown in the slide. In first way str1 is copied
into str3 using strepy(). Then, str2 is concatenated at the end of str3 using strcat().

Concatenation can be merely performed using strcpy() or strcat() only. When strepy() is used,
first strl is copied to str3. Then again in strcpy(), first, str3 is made to point to the end of the string
by adding length (of string pointed to by str3) to it. Thus, str3 points to "0'. The string pointed to by
str2 is then copied to str3.

When streat() is used for concatenation, first str3 is initialized with \0°. Then a string pointed to by
strl is appended to str3. Again using strcat() second string pointed to by str2 is appended to str3.

Convert To Upper Case

The lowercase characters present in the string can be converted to uppercase. For this xstrupr() is
used. In this function the given string pointed to by p is traversed till “\0’ is not met. While
traversing, it is checked whether the character is a lowercase character. If it is, then it is converted to
uppercase by subtracting 32 from the ASCII equivalent of character being considered.

What’s The Difference?

The standard library provides strupr() for xstrupr(). The counterpart for this is strlwr(), which
converts uppercase characters of the string to lowercase. The library functions like toupper() and
tolower() are also used for case conversion, however they work on a character and not on a string.
We can use tolower() or toupper() in place of strupr() or strlwr() to convert characters.

Comparing Strings

Often while working on strings it is required to arrange them in alphabetical order. This can be done
by comparing the strings. In our program, to compare strings we are using xstremp() function, yet
not defined, but the purpose is clarified through the output shown in the slide. If the strings are
unequal then a nonzero value is returned and when the strings are equal zero is returned.

Comparing Strings

The xstremp() function is defined in this slide. Both the strings are traversed till the characters
(pointed to by t and s) are identical. The loop terminates either if the characters are not matching or if
the string pointed to by t has reached to null character “\0’(i.e. end of the string). Once, the loop is
over, the difference between the ASCII values of the characters at which char pointer t and s are
pointing fo is returned.

Outputting Strings

To output a string a user-defined version xputs() has been defined for standard library function
puts(). The xputs() function, receives the base address of the string which is to be displayed on
screen. The base address is collected in char pointer p.

In the function, the string is traversed till end of the string has not met. While traversing the string,
the character pointed to by p is printed using printf(). The character can also be printed using
putch(). However, putch() merely prints one character at a time.

136 Strings — 11 Programming Expertise In C

Standard Library Functions

Lastly, some of the standard library functions used for working on strings are listed in the slide.

Programming Expertise In C

Strings — IIT

137

Strings - I11

In this lecture you will understand:

*
#
*
*

What is a const pointer

The need of const pointer

How to handle two-dimensional array of characters
How to create array of pointers to strings

138 Strings - IIT Programming Expertise In C

What Is p

Let us understand following code, which is also shown in the slide:

char *p="Hello" ;

p=p+l;
p — IIByell ,
*p ="M :

Here “Hello” is a constant string for which memory is allocated at runtime. Only 6 bytes would be
allocated. The base address of this string would then be stored in the pointer p. Since p is pointer
variable pointer arithmetic can be applied on it. Moreover, pointer p can be assigned new string like
“Bye”. We can change any character in the string pointed to by p using the indirection operator *.

Let us now try to understand the following code:

char p[] = "Hello" ;

p=pt 1
p — IIByell ‘
#p ="M :

Here p is a character array, which is assigned a string “Hello”. 6 bytes would be allocated for the
array and “Hello” would be stored in the array. p being the base address of the array, it cannot be
changed. The pointer p can be changed neither by assigning some value like p = p + 1 nor by
assigning base address of some other string, for example p = “Bye”. To change a character in the
array we can either use the subscript like p[0] or use the indirection operator * with p.

Go through the code snippet shown below:

const char *p="Hello";

p=p+l;
p — IIByell ‘
#p ="M :

Here the string to which p is pointing is fixed not the pointer p. This means that using p we cannot
change any character in the string to which it points. But the value of p can be changed. We can make
P point to another string by storing the base address of other string in it.

Let us now try to understand the following code:

char * const p="Hello" ;

p=p+l;
p — IIByell ,
*p ="M :

Here p is declared as a const pointer. This means that p cannot be changed; hence we cannot make p
to point to another string. But the string to which p points is not fixed. We can change the characters
in the string. Note that it is mandatory to initialize p at the same place where it is declared.

Look at the following code snippet:

char const *p="Hello" ;
=gt s

Programming Expertise In C Strings — IIT 139

p — FIByell :
=t=p =M ;

This is same as const char *p.

Let us now try to understand the following code:

const char * const p="Hello" ;

p=p+l:
p — IIByell ‘
=t=p ="M g

The declaration const char * const p ; is a combination of const char *p or char const *p and char
* const p. Here neither p can be made to point to another string (once initialized), nor we can change
characters in the string using p.

Utility of const

The program given in the slide copies source string strl to target string str2. We have already
discussed the working of xstrcpy() function. Note the function definition of xtrepy(). Here the first
character of source string is changed from ‘H’ to ‘A’. Can we not ensure that the source string
doesn’t change even accidentally in strepy()? We can by declaring char *s (of xstrcpy()) as const.
By declaring s as a const pointer we are declaring that the source string should remain constant
(should not change).

Thus the const qualifier ensures that your program does not inadvertently alter a variable that you
intended to be constant. It also reminds anybody reading the program listing that the variable is not
intended to change.

Handling Several Strings

The code snippet in the slide shows how multiple strings can be handled using one-dimensional
character arrays. Better way to do this is using 2D array.

Array of Strings / 2-D Array
The program given in the slide shows how a 2-D array of characters can be used to store multiple
strings.
Notice how the two-dimensional character array has been initialized. The order of the subscripts in
the array declaration is important. The first subscript (which is optional) gives the number of names
in the array (which in our case would be 5). The second subscript gives the length of each item in the
array.
The size of array n is then displayed which would be 100, as there are 5 strings and for each string 20
bytes are reserved. The next statement displays character of specified string where,

n[0][1] means 0 string’s first element. i.e. ‘a’ of “Sanjay”
n[1][0] means first string’s 0™ element, i.e. ‘A’ of “Amol”.

Slide Number 5

The slide shows how the strings of array n are stored in memory. The strings are stored in contiguous
or adjacent memory locations. Note that each string ends with a “\0’ and each string is 20 bytes apart
from the other. The arrangement as you can appreciate is similar to that of a two-dimensional
numeric array. Hence the strings in the array are displayed in the same manner as we do for two-
dimensional numeric arrays, i.e. using two for loops. However, with string array the printing of
characters of string stops when a “\0” is encountered.

140 Strings - IIT Programming Expertise In C

Slide Number 6

The program given in the slide interchanges the first string with the second one. A for loop is run,
through which strings are interchanged character by character. The strings are then printed. In the
printf() statement, format specifier %s is used and the base address of the string to be displayed is
supplied. Even using n + i in place of &n[i][0] would work.

Disadvantages

Note the in-memory representation of two-dimensional array of characters shown in the slide. Here,
401, 421, 441, etc. are the base addresses of successive names. Some of the names do not occupy all
the bytes reserved for them. For example, even though 20 bytes are reserved for string the name
‘Sanjay’, it occupies only 7 bytes. Thus 13 bytes go waste. Similarly for each name there is some
amount of wastage. In fact, more the number of names, more would be the wastage. Thus, the
processing of strings becomes inefficient. This can be avoided by using what is called an ‘array of
pointers’.

Slide Number 8

In the program shown in the slide n[] is an array of character pointers. It contains base addresses of
respective names. That is, base address of “Sanjay” is stored in n[0], base address of “Amol” in n[1]
as shown in the slide.

In the two-dimensional array of characters, the strings occupied 100 bytes, as against this, in array of
pointers, the strings occupy only 42 bytes. A substantial saving, you would agree. Thus, one reason to
store strings in an array of pointers is to make a more efficient use of available memory.

Another reason to use an array of pointers to strings is to obtain greater ease in manipulation of the
strings. Note here, to exchange the position of first string with the second string, we are required to
do is exchange the addresses (of strings) stored in the array of pointers, rather than names themselves.
Thus, by effecting just one exchange we are able to interchange strings. This makes handling strings
very convenient.

Slide Number 9

The slide shows the selection sort method applied on strings, in which i element is compared with
the rest.

For comparing strings stremp() is used. If it returns non-zero positive value then the i string is
alphabetically greater than the j® string. In this case only the base addresses of strings are
interchanged.

Programming Expertise In C Calendar 141

Calendar

In this lecture you will understand:
* How to display a monthly calendar

142 Calendar Programming Expertise In C

Calendar

Let us now write a program to display calendar for the specified month and year. To display calendar
for given month and year, first we need to find the first day for the given month of given year. To get
this we also need to know the total days from 1/1/1 to first day of the given month of given year (i.e.
upto 1/<given month>/<given year>). We need to find total days from 1/1/1 to 31/12/<given year-1>
plus the total days from 1¥ January of given year to first day of the given month of given year. We
have already discussed a program that finds the first day of the specified year. The similar logic is
used here.

In the program shown in the slide, month m and year y have been accepted through the keyboard.
Suppose the values entered for m and y are 8 and 2002. First the normal days, i.e. from 1/1/1 to
31/12/2001 are calculated. We have also calculated the leap days for the same period. The normal
days and leap days thus found are then added to get total days.

...Calendar

The logic discussed is implemented in this slide. An integer array days[] has been used that stores
days of every month. First the total days i.e. from 1/1/1 to 31/12/2004 are calculated and stored in
totaldays. Then the total days from 1/1/2005to 31/7/2005 are calculated and stored in s. The days
thus found are then added to totaldays. The firstday i.e. day of 1/8/2005 is then determined.

However, while calculating total days for the year 2005 we have not checked for leap year. The code
snippet given in the slide now checks whether given year is leap or not. If it is then 29 days are added
for February month.

Slide Number 3

The slide shows the row and column position for the day names for printing the calendar.

...Calendar

The column position for printing first day of the specified month (i.e. August) is calculated. Then at
appropriate positions the month name, year and names of days are printed using gotorc() and
printf().

...Calendar

The additional code shown in the slide, prints the days of the given month (i.e. August). To print the
days for loop is run. Each time through loop. cel is incremented by 6 and when it becomes greater
than 56, row is incremented and col is reset to 20.

...Calendar

Now to make the program interactive, we shall use arrow keys. On hitting right arrow key calendar
for same year next month should get displayed, whereas on hitting left arrow key calendar for same
year but previous month should get displayed. Hitting up arrow key should display calendar for next
year for same month and hitting down arrow key should display calendar for previous year for the
same month.

The getkey() function used in the program shown in the slide refurns the scan code of the arrow key
being hit. When Right Arrow key (77) is hit the month m is incremented and if m becomes greater
than 12, then y is incremented and m is reset to 1. On similar lines write logic for handling rest of the
arrow keys. Note, the whole logic is put in a while loop that runs indefinitely.

Programming Expertise In C Calendar 143

...Calendar

The program being at some places gives incorrect number of total days. We have checked for
possibility of leap year, if the condition satisfies we have straight away stored 29 in the array days.
Next time even though when the condition fails the days are taken as 29 only. This is the reason why
we get incorrect number of days. The change required to be done is shown in the slide. Note the else
part.

The September month for year 1752 contained 16 days only, (After 3rd directly 14th). Using if-else
statements we can display calendar for September’1752. This is done using the if statement as shown
in the slide in the block.

Programming Expertise In C Structure — 1 145

Structures - 1

In this lecture you will understand:

* What are structures

* How to access elements of a structure through a variable and pointer
* How to create an array of structures

146 Structure — 1 Programming Expertise In C

Terminology

The figure in slide illustrates the basic elements of a database. The columns shown in this figure that
are labeled as Name, Age, and Salary are called Fields. Each row holds a specific value for every
field, and is called a record. A database is a collection of such records.

Handling Data

Suppose, the data of an employee database, containing name, age and salary has to be stored. One
way is to create three different arrays for three fields as shown in the program given in the slide.

Though this approach allows us to store data, it is an unwieldy approach that obscures the fact that
you are dealing with a group of characteristics related to a single entity-an employee.

The program becomes more difficult to handle as the number of items relating to an employee go on
increasing. For example, we would be required to use a number of arrays, if we also decide to store
the name of department, address, etc. This will even destroy the natural relationship of the fields. To
solve this problem, C provides a special data type—the structure.

Structures

A structure contains a number of data types grouped together. These data types may or may not be of
the same type.

In the program given in slide, we have declared a structure named employee. It contain elements n, a,
s as char, int and float representing name, age and salary respectively. The struct is a keyword used
to declare a structure. The structure declared here, holds information for an employee, whereas we
can create a structure to hold information about a book or a student also. Hence, a structure is called a
user-defined data type.

Next, to be able to use the structure employee, we have defined three variables el, e2 and e3 and then
printed the data hold by these variables. Note how elements of structure are accessed. For accessing
the structure elements through a variable of structure a . operator is used, whereas an > operator is
used when elements of a structure are to be accessed through a pointer to a structure. Here we can see
that for each structure variable we need printf () statement to print the structure elements, this can be
avoided by using structure array, explained in the next slide.

Array of Structures

In the program given in earlier slide, we had created three structure variables to hold information.
Suppose information about 100 employees has to be stored now. Declaring 100 structure variables is
definitely not very convenient. A better approach would be fo use an array of structures. The program
given in the slide demonstrates how an array of structure can be created and used.

Terminology

Let us now look at the fundamental aspects of a structure. A structure is declared using struct
keyword. Following this keyword is the name of the structure, which is also called structure tag.
Within a pair of braces structure members/elements are declared. Note that the closing brace in the
structure type declaration must be followed by a semicolon.

Once the new structure data type has been defined one or more variables can be declared to be of that
type. For example the variables el, e2. e[10]. etc. where el, e2 are structure variables and e[10] is an
array of structures.

Programming Expertise In C Structure — 1 147

Conclusion

Unlike arrays, a structure is a collection of dissimilar elements. Whatever be the elements of a
structure, they are always stored in contiguous memory locations.

Array of Structures

Consider code snippet given in the slide. Here e[] is an array of structures of structure employee. The
slide shows in-memory representation of e[]. Then a few pointers are declared, where p is a char
pointer, q is a pointer to struct employee, and r is a pointer to an array of structures of dimension 3.

All the pointers p, q. and r are initialized with the base address e. Each of the pointers, p, q and r are
then incremented by 1. p being a char pointer, it will get incremented by 1 byte. The pointer q being
a pointer to structure employee (of size 7 bytes) will get incremented by 7 bytes. The.pointer r being
a pointer to an array of struct employee of dimension 3. it will get incremented by 7 * 3 locations.

If z is declared as,
struct employee *z[3] ;

then z would be an array of pointers to structures.

Declaration & Definitions

While declaring a structure the tag name is compulsory only if we wish to create structure variables
later. But while declaring the structure if the required variables are also declared or defined, then the
tag name is optional.

Copying
The program given in the slide shows two ways of copying a structure. In the first way, piece-meal
copying of structure elements is done from structure variable el to structure variable e2. However, it
is not necessary to copy the structure elements piece-meal. The values of a structure variable can be
assigned to another structure variable of the same type using the assignment operator. In the program
this is done by the statement, e3 =el ;

This copying of all structure elements at one go has been possible only because the structure elements
are stored in contiguous memory locations.

Copying Arrays

Suppose there are two integer arrays and the values from one array are to be copied to other array.
The code snippet given in the slide shows two ways to achieve this. In the first way through a loop,
elements of a[] are copied to b[]. A better solution is given in the second code snippet. Here, a
structure is created containing an array of integer as its element. A structure variable a is initialized
with the required values. Then using assignment operator elements of a are copied in one shot to
structure variable b.

Programming Expertise In C

Structure — I

149

Structures - 11

In this lecture you will understand:

*
#
*
*

How to create nested structures

How to pass elements of a structure to a function
How to pass structure to a function

How to retumn structure from a function

150 Structure — IT Programming Expertise In C

Nested Structures

One structure can be nested within another structure. Program given in the slide, shows nested
structures at work.

Here, there are two structures—address and emp. The address structure has city and pin code as its
members. The emp structure contains name, age, salary and a variable of structure address. A
variable e of struct emp is then created and initialized. The elements of e are then printed.

Notice the method used to access the element of a structure that is part of another structure. For this
the dot operator is used twice, as in the expression,

e.a.(member name)
To refer city, use e.a.city, and to refer pin, use e.a.pin.

The format specifier to be used should be decided according to the final member being accessed. For
example, in a.b.c.d.ef, the type of f would determine the format specifier.

Passing Structure Elements

Structure elements can be passed to a function by passing value of individual elements or address of
individual elements as shown in the program given in the slide.

Passing Structures

To pass individual elements would become more tedious as the number of structure elements go on
increasing. A better way would be to pass the entire structure variable at a time. This is shown in the
program given in the slide.

Here, a structure is passed to two functions. To the displayl() function the value of the structure
variable b is passed to the variable z of type structure book as shown in the slide. This is similar to
passing by values, copy of the variable b gets created.(i.e., memory space gets allocated for the
variable z). This value is then printed using printf().

In the showl() function address of b is passed, which is collected in a pointer to structure pb. Here
we need to use the > (Arrow) operator or the * operator as shown in the slide to access the members.
While using * operator, the parentheses are necessary as . operator has higher precedence over *.

Now the question comes, how do we define the formal arguments in the function. We cannot say
struct book z and pb because the data type struct book is not known to the function display1() and
showl() respectively. Therefore, it becomes necessary to define the structure type struct book
outside main(), so that it becomes known to all functions in the program.

Complex Nos.

The program given in the slide demonstrates how a structure is passed and returned from a function.
Here, the program contains a structure called com to hold two complex numbers i.e. float variables r
and i. Then a, b and ¢ have been declared as three structured variables, where a and b are initialized
at the same place. Then we have called add() function. To this function both a and b have been
passed and the result is collected in c.

In the function add(). we have created a temporary structure variable z. We have added the values of
r of x and y and stored in r of z. Similarly we have added values of i of x and y and stored it to i of z.
Finally we have returned the structure from the function. Note that to be able to user structure in a
function, declare structure com as global (i.e. declare it outside main()).

Programming Expertise In C Structure — 11 151

Complex Nos.

The program given in this slide is similar to the one discussed in previous slide, but with slight
modifications. Here, in place of structure, we have used a float array. To the add() function we have
passed the base addresses of the arrays a and b respectively. In the function we have created a
temporary array of floats of size 2, added the corresponding members and stored the result in array z.
Lastly, we have returned the array which is collected in float pointer ¢ in main(). However, ¢ is now
pointing to an array, which does not exist. This is because, z being a local member of function add()
dies after the function is over. To avoid this we will have to declare array z as a global array, or
declare it as member of main() and pass its base address to the function. However, this increases the
complexity of the program.

Passing Structures

If we execute the program shown in the slide using TC/TC++ compiler we get the address as 518,
502,521. As expected, in memory the char begins immediately after the int and float begins
immediately after the char. However, if we run the same program using VC++ compiler then the o/p
furns to be: 444, 448, 456. It can be observed from this o/p that the float doesn’t get stored
immediately after the char. In fact there is a hole of 3 bytes after the char as shown in the slide. This
is because VC++ is a 32-bit compiler targeted to generate code for a 32-bit microprocessor.

Some programs need to exercise control over the memory areas where data is placed. For example,
reading the contents of the boot sector (first sector on the floppy / hard disk) info a structure. For this
the byte arrangement of the structure elements must match the arrangement of various fields in the
boot sector of the disk. The #pragma pack() directive specifies packing alignment for structure
members. The pragma takes effect at the first structure declaration after the pragma is seen. Turbo
C/C++ compiler doesn’t support this feature, VC++ compiler does.

Here, #ipragma pack(1) lets each structure elements to begin on a 1-byte boundary as justified by
the output of the program 444, 448 . 449.

Applications of Structures

Some applications of structures are listed in the slide.

Programming Expertise In C Data Structure — 1

153

Data Structures - 1

In this lecture you will understand:

*
#
*
*

The disadvantages of arrays

The disadvantages of static allocation
How to allocate memory dynamically
How to implement a linked list

154 Data Structure — I Programming Expertise In C

Arrays

Arrays are simple to understand and elements of an array are easily accessible. However, arrays
suffer from certain limitations. Consider the program given in the slide. In this program we are
calculating the percentage marks of 10 students. For this an array per[10] is used. At a time, the
marks of three subjects of a student are accepted and his percentage marks are calculated and printed.
What if we wish to calculate percentage marks for more than 10 students? We can, but we need to
change the program, i.e. change the dimension of the array per[]. This is what is the limitation of an
array. Arrays have a fixed dimension. Once the size of an array is declared it cannot be increased or
decreased during execution. When we declare an array, we mention the size of the array. The size
tells what amount of memory has to be allocated for the array. This is what is known as static
allocation.

Dynamic Allocation

Suppose, the percentage marks are to be calculated for students and the number of students would be
entered through keyboard, i.e. at runtime. In such a situation we cannot use an array, since while
declaring array the size is required and we don’t know the size. In other words the memory for an
array gets allocated statically. Since the number of students is decided at runtime, the required
memory should also get allocated at runtime. This is what is known as dynamic allocation of
memory. The program given in the slide shows how to achieve this.

In the program, first the number of students, m is accepted using scanf(). Then the memory is
allocated dynamically using a function called malloc(). Note the way this function has been called.
We want to allocate memory for n integers. An int takes 2 bytes, hence we have given malloc (n *
2). To collect the base address of the memory thus allocated. the statement should be,

p=malloc(n*2);

But, malloc() returns a void pointer. Hence we need to typecast it to the required data type. Thus the
correct statement to allocate memory would be,

p=(int*)malloc(n*2);

Now through a for (which runs n times) marks are accepted, percentage is calculated and stored in
the allocated memory through

(p+i)=per;
Lastly, we have displayed the percentages of the students using pointer notation.

Memory Allocation

Using arrays allocates memory statically, which is decided at compile time. On the other hand, when
memory is allocated dynamically using malloc(), the memory is reserved at runtime i.e. at the time
of execution.

Better Still...

In the previous program first we accepted the total number of students and then allocated required
memory dynamically. The program given in the slide shows one more way of dynamic memory
allocation, where as long as the user wishes to enter data for students, the memory gets allocated for
that student.

In the program, a while loop runs as long as user wishes to enter data for the student. In every
iteration, the marks of a student are accepted, the percentage is calculated, and then the memory is
allocated to store the percentage. Note that the base address of the allocated memory is collected in p,
and the percentage per is stored in it. The loop gets terminated if user enters ‘n’ (or ‘N’ or value other

Programming Expertise In C Data Structure — 1 133

than “Y”). Suppose the percentages for the students thus calculated are to be printed now. We have
stored them in p. However, if you print the value in p you would get the percentage of the last
student. This is because in the next iteration again memory is allocated and collected in p. While
doing so. the previous memory location pointed to by pointer p is lost which causes memory leak as
shown in the figure given in the slide. To avoid memory leak a better solution is to take an array of
pointers as shown in the slide. However, again the size of the array would be required to specify
which would be static memory allocation.

Memory Leak?
Observe the program given in the slide.

Here, in main(), an int pointer j and a function f(). which returns an int pointer, is declared. Then
we have called f() and collected the returned value in j. In function f(), we have declared an int a
and returned the address of a (which is collected in j). However, a being a local variable objects, dies
as soon as the function f() is over. Thus j is pointing to a variable, which does not exist. Is this a
memory leak? No, it’s a dangling pointer pointing to dead or non-existing objects.

Best...

A better way is to store value and pointer to next value together. In the slide, 55 is the value, which is
stored at 200 and 400 is the address of the next value. Same is the case with other values like 63, 28,
etc. But the question is where to end this list. This is shown in the slide, where, in the last element
along with the value 60, NULL is stored indicating the end of the list.

This is nothing but a linked list in which each element points to the next element. Each element of the
linked list is called a node and each node consists of two parts viz., the data and the link to the next
node. The last node points to the NULL.

Linked List
Let us see a program that builds a linked list.

Here, we have created a structure called node. The members of this structure are data and link,
where data is declared as an int and link is declared as pointer to struct node *. The pointers p. q, r
and s are declared of type struct node * and represents the nodes of a linked list. For each of these
nodes first memory is allocated dynamically using malloc(). Then a value is stored in data of each
of the nodes. Then links are established between the nodes. To establish a link between nodes pointed
to by p and q the statement,

p->link=q;

is given. Similar statements are given to establish a link between nodes q and r and r and s. In the last
node s, NULL is stored. Thus node p points to node q. q points to r and r points to s. Finally s points
to NULL. Note the statement that allocates memory for a node.

Slide Number 8

The first printf() prints the values stored in nodes. The second printf() shows one more way of
printing values. It prints the values stored in p, q, and s respectively. It shows that elements can be
accessed through the links when the link starts at p.

A better way is to use a temporary pointer to visit each node and print the data. This is what we have
done in while loop. t, a temporary pointer to node, is made to point to the first node (i.e. p). In every
iteration of this loop, first the value is printed and then t is made to point to next node by the
statement

t=t->link ;

156 Data Structure — I Programming Expertise In C

In while loop we have checked for condition t != NULL. Thus after printing the value of last node
when t becomes NULL and the loop gets terminated.

Most General

The generalized form of a program, which we discussed in slide 4, is given here. The program makes
use of linked list.

Here, the structure node, which is made global, contains per an int and link a pointer to the structure
itself, as data members. A pointer p of struct node is also declared as global so that it can be used in
another function.

In main(). p is initialized with NULL to indicate that the list is empty. Through a while loop marks
are accepted and percentage pp. The percentage pp is then passed to function add(), which creates a
node and adds it to the list. The definition of this function is given in the next slide. This process
continues till user wishes to enter marks for students.

Slide Number 10

The add() function deal with two situations—adding a node to an empty list and adding node at the
end of an existing list.

First memory is allocated for a node (which is pointed to by r), percentage pp is stored in per and
NULL is stored in link part of the node.

Now if the linked list is empty i.e. p == NULL, then p is made to point to the first node by the
statement,

p=r;

However, if the linked list is non-empty, then a temporary pointer t is initialized with p and through

the while loop the list is traversed till the node having its link as NULL is received. In the while loop
each time t is made to point to the next node through the statement,

t=t->link;

When t reaches the last node the condition t > link != NULL fails and the loop terminates. Once
outside the loop, the previous last node is connected with the new node by the statement,

t>link=r;
and the link gets established. Note that p will always point to the first node in the linked list.

Programming Expertise In C Data Structure — I1 157

Data Structures - 11

In this lecture you will understand:

* What is stack
* How to implement stack as linked list

158 Data Structure — IT Programming Expertise In C

Stack As A Linked List

A stack is a data structure in which addition of new element or deletion of an existing element always
takes place at the same end. This end is often known as top of stack. When an item is added to a
stack, the operation is called push, and when an item is removed from a stack the operation is called
pop. If we implement stack as an array, it suffers from the limitation of an array that we have
discussed already. This limitation can be overcome if we implement stack as a linked list.

The stack as a linked list as shown in the slide, contains the data and a pointer that gives location of
the next node in the list. Initially a node with value 45 is created having a link as NULL and top is
pointing to this current node. The elements are pushed to the stack, thereby updating the top and
establishing the link between current node and the previous node.

On the other hand, while popping elements from the stack, top has to made point to the previous
node.

Stack As A Linked List

The program given in the slide demonstrates how stack can be implemented as a linked list.

Initially a structure node is created as global. In main(), we have declared top as a pointer to struct
node. It is set to NULL. The first node with value 45 is created using function push() and to make
top to point this current node, its address is passed to push(). On similar lines few elements are
pushed on to the stack.

The elements of the stack are displayed using displaystack() function. The number of elements in a
stack is determined using count().

Elements are retrieved one at a time using pop() and collected in item. Lastly the final count is again
determined using count() as an evidence to know the size of stack.

Push Element On Stack

Lets understand the push operation in detail. push() accepts pointer to pointer to struct node in s and
item. an int.

Suppose the address of top is 90, which is collected in s. A pointer to struct node, q is declared and
memory is allocated using malloc() for the new node whose address is 10 (pointed to by q). Now the
element 45, is inserted info this node by the statement

q->data = item;

and the link field of the node has been updated to point to top through the statement
q->link="s;

Lastly top is made to point to q (as it points the new node) through the statement
'$=4q;

At the time of adding second element 28 to the stack, again memory for a new node is allocated and
its address 20 is stored in q. 28 is inserted into new node and link field is made to point to the top i.e.
previous element. Now top is updated to point the top node pointed to by q. On similar lines rest of
the two elements gets added to the linked list.

Pop Element From Stack

Let us now see the working of pop operation in detail. The pop() function accepts address of top.
which gets collected in s, a pointer to pointer to struct node. The function returns an int.

Programming Expertise In C Data Structure — I1 159

The figure given in the slide shows an initial status of the stack, where top is pointing to node with
address 60. In the pop() function, first it is checked whether stack is empty. If top, i.e. value in s is
NULL then it indicates that the stack is empty and if so then we have displayed a proper message.
But if stack is not empty, then q is made to point to the top and data from the node at which q is
pointing to is collected in item and top is updated to point to node previous to current node. Next
node pointed to by q is freed using free() and the element removed i.e. item is returned.

Display Stack Elements

Now the displaystack() function is straightforward, it simply traverses the list through a while loop
and displays value of node visited through loop. The loop terminates when q reaches end of the list
i.e. it becomes NULL.

No. Of Elements In Stack

The working of count() function which returns number of elements (or nodes) is similar to
displaystack() function with a slight difference. Here, a counter ¢ is incremented by one while
traversing through the list and the count c is then returned.

Programming Expertise In C Disk -1 161

Disk - 1

In this lecture you will understand:

* The logical organization of the disk
* How to read the contents of boot sector
* What are Boot Parameters

162 Disk—1 Programming Expertise In C

Disk
The diagram given in the slide shows the various parts of a floppy disk.

The slide also explores the hard disk. The advantages of the hard disk are its higher capacity to store
data, reliability and faster access to the data in the slide.

Parts of Platter

The platter of disk consists of circular tracks and each track is again divided into sectors. All the
sectors are of same capacity.

The slide also displays the specifications of the various types of floppy disks. Every sector consists of
512 bytes.

The size of a disk is calculated by:
Sides * Tracks/side * Sectors/Track * Bytes/Sector / Bytes/Kb
The size of 360 Kb floppy is calculated as shown in the slide.

Logical Organization

A disk is logically organized into sides, tracks and sectors where information is stored. Side 0, Track
0, Sector 1 is the Boot Sector. From second sector onwards, FAT chain entries F1 (first copy of FAT)
and F2 (second copy of FAT) begins. Each FAT requires 9 sectors, hence the second FAT's last entry
is made in Side 1, Track 0, Sector 1. From Sector 2 onwards there are 14 Directory entries. In all
other sectors data can be stored.

Reading Boot Sector

Let us now understand what is a boot sector and how to read it. Boot Sector contains information
about how the disk is organized. That is, how many sides does it contain, how many tracks are there
on each side, how many sectors are there per track, how many bytes are there per sector, etc. On a
1.44 MB floppy. the Boot Sector is located on side 0, track 0, and sector 1. Using absread() function
we have read the Boot Sector of 1.44 MB floppy disk. As a boot sector is of 512 bytes, arr is
declared as char array of that size. The information thus read is then printed through the printf()
statement.

Contents of Boot Sector

The Boot Sector consists of two parts: ‘Boot Parameters’ and ‘Disk Bootstrap Program’. The Boot
Parameters are useful while performing read/write operations on the disk. The Boot Parameters
basically contain information indicating how the disk has been organized.

Boot Parameters

The table given in the slide lists the Boot Parameters along with their byte configuration for a 1.44
MB floppy.

Reading Boot Sector

Let us now see a program that reads the Boot Sector of a 1.44 MB floppy disk. In the program we
have declared a structure called booet. First few members of the structure are given here with data
type that is suitable to store the corresponding information. Add members to this structure for
remaining parameters. Thus to store sectors in reserved area a data member could be sra with data
type as int (since, it takes 2 bytes).

Programming Expertise In C Disk -1 163

Then, we have declared a variable b of boot structure and called absread() to read the specified
sector (i.e. Boot Sector).

Slide Number 8

In the program given in this slide, after collecting the values in elements of b they are displayed.
Note, how the structured information is displayed using proper format specifiers within printf().

The jump instruction consists of 3 bytes, hence it is printed using %ox, format specifier. The System
ID is 8 bytes long and is printed using %c through the for loop and the Bytes/Sector and
Sectors/Cluster are printed using %d. On similar lines write code for printing rest of the parameters.

Programming Expertise In C Disk—11 165

Disk - IT

In this lecture you will understand:

* How to read a disk
* How to know a disk is virus infected
* What is an Anti-Viral software

166 Disk—1I Programming Expertise In C

In General

The general form or syntax of absread() function is shown in the slide, where the drive no. can be an
integer. The integer 0 stands for drive A, 1 =B, 2 =C, etc. The no. of sectors specifies the number of
sectors to read. Next parameter specifies the starting logical sector from where reading should begin
and the last parameter is the buffer into which the information read is to be stored.

Hence in the statement,
absread (0,1,0,arr) ;

0 is the A drive, 1 sector to be read and 0 is the logical sector number (here boot sector) and arr is the
buffer.

To read sectors, ROM-BIOS refers them through side, track, sector whereas DOS reads them using
logical sector numbers (LSN).

ROM-BIOS refer the drives using the physical configuration whereas DOS uses logical drives
starting from 0 onwards as shown in the slide.

What Is 1t?

The slide shows the typical values and the values obtained when a boot sector is infected. The virus
infects the Disk Bootstrap Program (DBS).

Anti-Viral

To disinfect the disk most antiviral softwares read the Boot Parameters and Disk Bootstrap Program
(DBS) from the logical sector number (LSN) 50 and writes the sector information in the LSN 1
through abswrite(). The function abswrite() is the counterpart of absread() having same
parameters except the function that it performs, it writes the sectors.

Better...

Unnecessarily remembering the logical sector number where the copy of boot sector is stored, we can
read the parameters from an uninfected floppy disk and write it to infected floppy disks. The program
shown in the slide achieves this. The array of pointer names contains some of the names of the
viruses.

Programming Expertise In C

Directory

167

Drrectory

In this lecture you will understand:

How to read directory sectors

How directory entries are stored on the disk

How date and time of creation/modification of a file is stored
What is meant by an attribute of file and how it is stored
How a file is loaded or saved on a disk

* % ¥ ¥ W

168 Directory Programming Expertise In C

Directory Sector

The root directory of a 1.44 MB disk containing a 12-bit FAT system occupies 14 sectors. The
directory sectors contain 32-byte entries for various files/sub-directories present in the root directory.
Since each enfry is of 32 bytes, one directory sector can accommodate 16 such entries. As there are
14 directory sectors on a 1.44 MB disk, there can be a maximum of 224 entries (16 * 14) in the root
directory.

Each 32-byte entry contains either a filename or a sub-directory name. If it is a file entry then it
contains information about file’s name, its size, attributes, starting location on the disk, etc. The order
of and size (in terms of bytes) for this information is shown in the slide.

Printing Directory

The program given in the slide reads the directory sector and displays the information that is read.
The directory sector consists of 16 directory entries. The logical sector number for directory entry is
19. We have used absread() to read this sector and collected information in e, an array of entry
structure. We have declared entry structure with the elements required to store file information.

Why 2 Bytes?

The table given in the left side of the slide lists the parameters of directory entry. Note that for the
entries like date and time only 2 bytes are reserved, whereas, to store a date as 25/01/04, 9 bytes are
required. How do these 9-byte strings get converted to 2-byte entries?

The calculation needed to store the date in two bytes is shown in the slide. First the difference
between 2004 and 1980 (the year since DOS exists) is multiplied by 512. To this is added the value
obtained by multiplying the month by 32. Then the date is added to this sum. The binary equivalent
of the resultant sum is placed in the date field in the directory entry of the file.

The first 5 bits represent the days, next 4 bits represent month and the remaining 7 bits represent
difference of 1980 and the year (of the date being considered). The bit representation for the date
25/01/2004 is shown in the slide. The bit representation of year, month and days is also verified, for
example, the bit representation for the year is 00110000 i.e. 2* + 2> => 16 + 8 => 24. 24 is the
difference between 1980 and 2004. Hence, 1980 is added to 24, which gives the year 2004.

Similar to date, time is also stored within 2 bytes. The distribution of bits for time is displayed in the
slide.

Attribute Byte

The attribute of a file tells whether a file is hidden, read-only, sub-directory, etc. In the attribute byte
each bit represents either the type of the file or whether the entry is a sub-directory entry. The 0-bit is
used for read only attribute and 1-bit is used for hidden attribute. If bit 0 is set to 1 then the file can
only be read, it cannot be modified or deleted. Similarly if bit 1 is set to 1 then the file is made
hidden.

The program given in the slide reads the directory sector and writes 2 in the attribute byte to make the
file(s) hidden. After setting the attribute, the directory sector is written back on to the disk using
abswrite().

Attribute Byte

The meaning of each bit of attribute byte is shown in the slide. The volume label gets displayed when
we execute the command DIR on the command prompt. The volume label is set when we format a
disk using DOS command FORMAT. This command creates tracks and sectors, writes Boot

Programming Expertise In C Directory 169

Parameters and Disk Bootstrap Program and lastly asks for volume label to enter. Using DOS
command Label we can set a new volume label for the disk.

Loading/Saving a File

Suppose a file PR1.C is of 1500 bytes in size. Suppose the starting cluster number for this file is 3.
The starting cluster number indicates the place where the file begins in the data space of the disk. The
first 512 bytes are stored in sector 3. Then suppose sector 5 is allotted to store next 512 bytes. If the
next sector allotted is 8, then the remaining 476 bytes are stored in this sector.

The 32-byte directory entry of this file is shown in the slide. T & D stands for time and date of file
and 3 is the starting cluster number and 1500 is the size of the file.

The FAT entry of this file is also shown in the slide. The entry 5 indicates that the remaining bytes of
this file begin from sector 5 and the entry 8 signifies that next remaining bytes are stored in sector 8
and FFF signifies the end of the file.

Programming Expertise In C Console I/O 171

Console 1I/0

In this lecture you will understand:

* The functions available for Console I/'O

* Difference between formatted and unformatted Console I/O
* How to R/W From / To String

172 Console I/O Programming Expertise In C

Input/Output In C

Though C has no provision for I/O, it of course has to be dealt with at some point or the other. Each
operating system has it’s own facility for inputting and outputting data from and to the files and
devices. It’s a simple matter for a system programmer to write a few small programs that would link
the C compiler for particular Operating system’s I/O facilities. The developers of C Compilers do just
that. They write several standard I/O functions and put them in libraries.

The input/output operations in C are done through functions. The slide lists some of the I/O functions
that we have used so far.

Slide Number 2

There are numerous library functions available for I/O. As shown in the slide, these are classified into
two broad categories—Console I/O and Disk I/O, and Port I/O functions. The Console I/O functions
are those, which receive input from keyboard and write output to VDU. The Disk I/O functions
perform I/O operations on a floppy disk or hard disk. The Port I/O functions perform I/O operations
on various ports.

The Console I/O functions are further classified into two categories—formatted and unformatted
console I/O functions. The basic difference between them is that the formatted functions allow the
input read from the keyboard or the oufput displayed on the VDU to be formatted as per our
requirements. The functions available under each of these two categories are shown in the slide. Note
that as far as unformatted I/O functions are concerned, no standard library functions are available for
int and float.

printf()
The general syntax for printf() is shown in the slide.

The format string can contain format specifiers, escape sequences, and any other characters. The
format specifiers for char, ints, and floats and strings are given in the slide along with various escape
sequences that begins with “\’.

Now a question arises as how printf() function interpret the contents of the format string. For this it
examines the format string from left to right. So long as it doesn’t come across either a % or a \ it
continues to dump the characters that it encounters, on to the screen. The moment it comes across a
conversion specification in the format string it picks up the first variable in the list of variables and
prints its value in the specified format.

Formatting Output

Let’s understand the format specifications. In the program a is initialized with 35. Then using
printf() the value in a is printed. Note the format specification given in each of the printf()
statement. The field-width specifier tells printf() how many columns on screen should be used while
printing a value. Thus, %2d says, “print the variable as a decimal integer in a field of 2 columns™. If
the value to be printed happens not to fill up the entire field, the value is right justified and is padded
with blanks on the left. If we include the minus sign in format specifier, this means left justification is
desired and the value will be padded with blanks on the right.

Formatting Output

Let us now see how to format a float value. In the program given in slide, field-width is also used
with format specifier %f. The format specifier %7.4f reserves space for 7 characters on the screen of
which 4 are used for digits after decimal point, 1 for the decimal point and remaining for digits before
decimal point. Thus, entire space is used for printing the number 35.6927. The format specifier

Programming Expertise In C Console I/O 173

%08.21 reserves space for 8 characters of which 2 are used for digits after decimal point. The format
specifier %-7.1f reserves space for 7 characters on the screen and due to *-° sign the value is left
justified with blanks padded on the right. Due fo precision 1, the fractional value is rounded off to
nearest value as the next value is greater than 5. Using %1.1f, space is reserved for only 1 character
on the screen, but since the value in a cannot be accommodated, it uses the space as required
displaying only 1 digit after decimal point.

On similar lines, the format specifications are used for double and long double.

Escape Sequences

Let us now explore the escape sequences.

We have already used \n a newline character which takes cursor to the beginning of the next line. The
newline character is an ‘escape sequence’, so called because the backslash symbol (\) is considered as
an ‘escape’ character—it causes an escape from the normal interpretation of string, so that the next
character is recognized as one having a special meaning. A program is given in demonstrates the use
of escape sequences.

The string “Hello\b\bHi” in printf() prints ‘HelHi’. This is because \b is a backspace character,
which moves the cursor one position to the left of its current position. The string “‘nHello\t\tHi”
prints the output on new line as “\n” (New line) is used and ‘Hi’ is printed in the third tab zone. A 80-
column screen usually has 10 tab stops, which divides screen into 10 zones of 8 columns each.
Similarly, “\nHello\nHi” prints ‘Hello” and ‘Hi’ each on a new line. Then “\nHello\rHi” prints
‘Hello’. After printing ‘Hello’., “ir” takes the cursor to the beginning of the screen from where
onwards the string “Hi” is printed, hence only ‘Hello’ is displayed on the screen.

“\‘nHe said \"Let us go\".” prints “He said “Let us go™.’. The “*” character prints double quotes. “‘\n//
W prints *// \W. “* prints a backslash character. “\nHello\t\tHi” prints the output as shown in the
slide.

Conclusion

Once again let us have a look at the syntax of printf() and scanf() statements. The format string of
printf() statement can have format specifiers, escape sequences or any other characters. The format
string is followed by a list of variables, constants or expressions, but is optional.

The scanf() statement also consists of format string and list of variables. The format string must
contain format specifiers only and the list of variables is also compulsory. Though it is rarely used,
we can use field-width in the format specifier.

Unformatted Console I/0O Functions

Let us now switch over to the unformatted Console I/O Functions. There are several standard library
functions available under this category—those that can deal with a single character and those that can
deal with a string of characters. We often want a function that will read a single character the instant
it is typed without waiting for the Enter key to be hit. getch() and getche() are the two functions that
serve this purpose. The program given in the slide demonstrates the use of some such functions.

The functions getch() and getche() return the character that has been most recently typed. The ‘e’ in
getche() function means it echoes the character that you typed to the screen. As against this getch()
just returns the character that you typed without echoing it on the screen. getchar() works similarly
and echo’s the character that you typed on the screen, but it requires Enter key to be typed following
the character that you typed. We can use fgetchar() as well. The difference between getchar() and
fgetchar() is that the former is a macro whereas the latter is a function.

174 Console I/O Programming Expertise In C

The functions putch(). putchar() and fputchar(), prints a character on the screen. As far as
working of these three functions is concerned it’s exactly same, however, they can output only one
character at a time.

The slide has given the peculiarities of functions that read a character. getch() doesn't wait for the
enter key to be pressed while supplying the input character. getche() is same as that of getch()
except that it echoes (display) it on the screen.

getchar() waits for the enter key to be pressed while supplying the input character. Moreover it’s a
macro not a function, whereas its counterpart is fgetchar(), which is same as getchar() except that it
is a function.

Programming Expertise In C

FileI/O-1

175

File I/O - T

In this lecture you will understand:

*
#
*
*

How Disk I/O operations are performed
What is buffered I/O

How to read a file and display its contents
Why and when to use typedef

176 FileI/O-1 Programming Expertise In C

Disk I/O

Having dealt with the Console I/O functions, let us now turn our attention to Disk I/O functions. As
shown in the slide Disk I/O functions can be broadly divided into two categories—High
Level/Standard Disk I/O and Low Level Disk I/O. The High Level I/O is categorized into Text and
Binary mode I/O.

Again the Text mode is classified into Formatted and Unformatted I/O. In Formatted Text I/O the
data of all types (i.e. char, float, etc.) can be formatted using fprintf() and fscanf() functions. In
case of Unformatted Text I/O, the data of char type is handled using functions getc(), fgetc(),
putc(), fpute(). For int and float type no standard library functions are available. For strings
fgets(), fputs() functions are available which works on line by line basis.

Buffered 1/0

When we try to read file contents, the contents are brought into memory and are then read through a
program. To write the contents in the file, the contents are first written to the buffer allocated in
memory and are then moved to the disk when we close the file. This mechanism is termed as
Buffered I/O.

Displaying File Contents

The program given in the slide reads the contents of file and displays them. In this program we asked
for the file to be read, opened it, read it character by character till end of file is not encountered and
displayed the characters on screen.

We have declared a pointer fp of type FILE. Each file that we open will have its own FILE
structure. The FILE structure contains information about the file being used, such as its current size,
its location in memory, etc. More importantly it contains a character pointer that points to the
character that is about to get read. Then we have opened the given file using fopen() function, which
accepts two parameters—filename and the mode in which the file has to be opened. Since we are
reading the file we have specified “r”, which represent read mode. fopen() returns a pointer to the
file which is stored in fp.

Once, the file is opened., it is read on character by character basis using function getc() function. The
characters obtained are then printed using printf(). When an end of the file is reached, the end of the
file character is returned. This character i.e. EOF is a macro defined in the ‘stdio.h’ file. The FILE
structure is also defined in ‘stdio.h’, hence we have #included this file in our program. Lastly the file
is closed using fclose(). This function deactivates the file.

typedef

New types can be defined through the typedef statement. Instead of writing lengthy type names in the
declaration of variable, a type can be typedefed with a short name and can be used in the rest of the
program.

Once the type unsigned long int is typedefed using

typedef unsigned long int uli ;

the variables can be created using

ulii.j:

Slmllarly structures can also be typedefed as shown in the slide. The file structure is typedefed as
FILE in ‘stdio.h’ and later it is used to declare file pointers as shown in the slide.

Programming Expertise In C FileI/O-1 177

A Fresh Look

Now again take a look at the program to read the file contents. The FILE structure contains a char
pointer member say fp, which points to the first character of the chunk of memory where the file has
been loaded.

When the contents are read using the getc() function , the function returns the character and
increments the pointer fp to the next location. Again when gete() is called the new character is
returned and pointer is incremented. This continues until the end of the character is reached.

Tips

The slide summarizes some points about the file operations.

Programming Expertise In C File/O-1I 179

File I/O - IT

In this lecture you will understand:

*+ How to write data to a file
* How to copy contents of one file to another
* How to encode and decode file contents

180 Filel/O-1I Programming Expertise In C

Copying Files

We can copy the contents of one file into another, as demonstrated in the program given in the slide.
This program takes the contents of a text file and copies them into another text file, character by
character.

Here, we have opened source and target file, which are pointed to by fs and ft respectively. The
source file is opened in read mode whereas target file is opened in write mode.

The file pointed to by fs is read through gete() and the character is written into the file pointed to by
ft using putc(). The process is repeated until the character read is EOF. Lastly, the opened files are
closed through the fclose().

Filecopy

We should always check whether the function fopen() is successful to open specified file. This can
be done by checking the value returned by fopen() If fopen() fails to open a file it returns NULL. In
the program shown in the slide, if fopen() returns NULL while opening the source file we have
terminated the program by calling the exit() function. If the function opens the source file but fails to
open target file then also we have terminated the program, but before exiting the program we have
closed the source file.

We have read the source file character by character and using getc() function and the characters thus
read are written to target file using pute() function.

The entire logic of reading / writing given in the program can be replace the code (also given in the
slide) given below:

while ((ch=getc (fs)) = EOF)
putc (ch, ft);

Here, the character read is checked. If it is not a EOF character, then the character is written into the
file, otherwise the loop is terminated.

Tips
The following are some important points to remember:

(a) While supplying the filename, the path can be included but the length of the path should not
exceed 66 characters.

(b) fopen() returns NULL if file is absent when opened in read mode, otherwise returns the address
of the structure.

(c) When fopen() is used to open a file in write mode, then it creates a file if it is absent otherwise
if present it overwrites the same.

(d) fclose() not even closes the file but also it adds 26 at the end of the file, if opened for writing.

Coding/Decoding

To code/encrypt a file means to rewrite the contents of file in such a manner so that the contents of
the file would not be in readable format or would not contain any meaningful information. On the
other hand decoding/decrypting refers to regenerate the file in its original form. Some logic like
adding some number to ASCII value of each character of the file, etc. is used while coding the file.
While decoding the file the same number is subtracted from the ASCII value of the character read
from (coded file) to get original character(s).

Programming Expertise In C File/O-1I 181

The program given in the slide demonstrates how coding/decoding of a file can be done. To
code/decode a file, source and the target files are opened in read and write mode respectively. Next a
choice has been accepted to know whether to encrypt or decrypt a file. For encrypt or decrypt a file,
encrypt() and decrypt() functions are used. After encrypting or decrypting a file, the source file is
removed or deleted using remove().

Offset Cipher

The function definition of encrypt() and decrypt() functions have been given in this slide. In
encrypt() function the source file pointed to by FILE pointer fs is read character by character. This
character is then written in target file after adding 128 to the ASCII value of the character.

In decrypt() function we have read the file character by character. Before writing the character to the
target file we have subtracted the same number i.e. 128 from the ASCII value of the character.

Note that the file pointers fs and ft used in these functions are declared globally so that they can be
used within encrypt() and decrypt() functions.

We have chosen an unusual number 128, instead of using simple numbers like 1, 2, 3 etc. This is
because if 1 is added to ch then the contents can be easily decoded, but on adding 128 results
graphical characters which are difficult to decode. This way of encrypting / decrypting a file through
an offset is called offset ciphering.

Substitution Cipher

Instead of using offset cipher one can use substitution cipher i.e. by substituting a different character
in place of original character. The function given in the slide uses substitution cipher to encrypt a file.
Here, the corresponding characters of str1 are substituted with those of str2. Each time a character ch
read from the file is checked against the character of strl and on finding it the corresponding
character of str2 is written into the file.

Programming Expertise In C More File 'O — I 183

More File I/O - I

In this lecture you will understand:

* How to remove blank lines from a file

* How to read and write records from/to the file
* Various file opening modes

*

Difference between text mode and binary mode file I/O

184 More File /O -1 Programming Expertise In C

Remove Blank Lines

The program given in the slide removes blank lines from a specified file. To remove blanks from a
file we need two files, the source from which blank lines are to be removed and the target into which
non-blank lines are to be written. Hence two files are opened pointed to by fs and ft.

Each time a string is read through
fgets (str, 79, fs)

The line thus read in str is send to a user-defined function isblank(). If the given string i.e. str
contains a blank line then isblank() returns BLANK (A macro defined with value 1) otherwise it
returns NOTBLANK (again a macro defined with value 0). If the returned value is NOTBLANK then
we are writing the line i.e. str into the target file using fputs(). The fgets() function is similar to
gets() except it works on files and requires the length and the file pointer. The fputs() function need
not require the length of the string.

Lastly, the while loop gets terminated, we have closed files. We have removed the source file s and
renamed the target file with the same name as that of the source file.

Slide Number 2

The function definition of isblank() is given in this slide. Here, through a while loop each character
of the string pointed to by p is read. Each character of the file thus read is then checked for whether it
is a space or tab or new line character. If any of these characters are found then the loop continues by
incrementing the pointer otherwise NOTBLANK is returned. If the entire string gets scanned, and
the control reaches outside the while loop, then BLANK is returned.

Handling Records

Let us now see how records can be stored to a file. The program given in the slide demonstrates how
records containing information about employee can be written to or read from a file.

Here, we have declared a structure called employee. Then we have opened a data file called
‘emp.dat’ for writing. A while loop runs as long as ch contains ‘y’ (i.e. till we wish to add records).
To input data for record we have used scanf() and the record is written into the file pointed to by fp
using fprintf(), which writes into the file and have similar syntax as that of printf() except the file
pointer fp. After writing the record the user is prompted whether to enter a record or not through the
'Add another y/n' message and accepts a character ch, if it is not equal to 'y' then the loop is
terminated and the file is closed.

Slide Number 4

This slide contains the code to read the records from a file. Again the file is opened in read mode. A
while loop runs, whereby. in each iteration of this loop a record is read from the file using fscanf().
The syntax of fscanf() is similar to that of scanf() except it needs a pointer to FILE. The record thus
read is then displayed on the screen using printf(). Lastly the file is closed using function felose().

Why The Difference

The size of a record shown in the slide is 26 bytes. However, if we write this record on disk using
fprintf(), then its size turns out to be 29 bytes. Since the file is opened in text mode for reading and
writing (i.e.”wt”and “rt”) the number 4500.50 requires 7 bytes, as there are 7 characters present in it.

Instead if we read / write the records using fread() / fwrite() in binary mode ("rb" / "wb"), they
store numbers more efficiently.

Programming Expertise In C More File 'O — I 185

File Opening Modes
Let us now have a look at the modes available for opening a file.

"w" is equivalent to "wt", used for writing to a file in text mode. "wb" is used for writing to a file
in binary mode. When opened the file with this mode a new file is created if the file is not present on

the disk. If the file is present, the existing file is overwritten. The operation possible is writing to the
file.

Similarly for reading a file we have modes like "rb" and "rt" used to read a file in binary and text
mode respectively. When opened the file with this mode NULL is returned if the file is not present on
the disk. If the file is present, the file is loaded into the memory and pointer is set to point to the first
character in file. The operation possible is reading from the file.

To open a file in append mode we can use "ab" and "at". When opened the file with this mode a
new file is created if the file is not present on the disk. If the file is present, it is loaded into the
memory and pointer is set to point beyond the last character in file. The operation possible is writing
at the end of the file.

Slide Number 7

This slide summarizes the modes available for opening a file.

Programming Expertise In C More File 'O — 11 187

More File I/O - IT

In this lecture you will understand:

* How to recover data from a virus infected file

* How to change an internal DOS command called DIR
* How to perform low-level Disk I/O

188 More File 'O — 11 Programming Expertise In C

Delete

Our aim is to perform the steps listed in the slide to remove the Jerusalem virus from an infected file.

The Program

The steps listed in earlier slide are carried out in the program given in this slide. Here, a char array
s[] is declared and initialized with the signature byte values of the Jerusalem virus. The file
‘WS.EXE’ is opened in binary mode for reading. Then using fread() first 10 bytes of file are read
and each byte is checked with the corresponding signature byte. If anyone of the byte is mismatched
with the signature bytes, the file is closed and program terminates.

If all the bytes are found to be matching with the signature byte, then it indicates that the file is
infected and hence the program proceeds towards removal of the first 1701 bytes of the file. The code
to recover the file is given in next slide.

Slide Number 3

A temporary file called ‘TEMP.EXE’ is opened in binary mode for writing. Now the first 1701 bytes
are bypassed by placing the file pointer past 1701 bytes using fseek(). The macro SEEK SET is
used to move the file pointer to the specified position.

The remaining characters of the file are now written into ‘“TEMP.EXE’. Both the files are closed,
“WS.EXE’ is removed and 'TEMP.EXE' is renamed as 'WS.EXE' using renameq().

Changing Commands

We can change the name of an internal DOS command by a C program. The internal commands are
stored in a file called ‘Command.com’. The program shown in the slide attempts to change DIR
command.

Here, ‘command.com’ is opened in binary mode for reading and writing. The file is read and checked
for the three consecutive letters of command through consecutive ifs. Once, the consecutive letters
DIR are found, the file pointer is moved three characters back and made to point to D of DIR. Then
using pute() DIR is replace by three characters 'Y', 'P', 'K'. To proceed as usual, we have called
fseek(). This is necessary as the sequence is altered. After changing the command, file is closed.

Note: While writing the program provide the correct path of ‘Command.com’ file. After executing
the program, run command.com file and then run YPK command.

Low level Disk 1/0

Let us now see how to use low-level disk I/O functions.

We have already discussed a program that copies contents of one file to another. But, the program
could copy only the text files and not the .EXE or .COM files. This was because .EXE and .COM are
binary files. If such files are opened in text mode and read character by character using fgetc() then if
the file contains a character with ASCII value 26 then copying would stop abruptly as fgete() would
return EOF. So we need to copy .EXE/.COM files differently.

Secondly, in the earlier program need to compile the program every time to copy files and the
program used to prompt us to enter the source and target file names. We want a program that should
copy .EXE/.COM files, should not be required to be compiled every time and we must be able to
supply the filenames at the command prompt (as we do in DOS commands like COPY, MOVE, etc.).
The program given in the slide shows how this can be done.

The arguments that we pass on to main() at the command prompt are called command line
arguments. Here, the function main() has two arguments viz, arge in which count of command line

Programming Expertise In C More File 'O — 11 189

parameters is stored and an array of pointers to strings argv which holds the addresses of the
command line parameters.

Then in main(), arge is checked for the necessary arguments, if not, proper messages are displayed
and program is terminated. Next the source file whose name is stored in argv[1l] is opened using
open() function for reading in binary mode. The syntax of open() is similar to fopen(). except the
‘O-flags’ used to open file. If the open() function is successful to open the file then it returns handle
(non-zero value) to the file, otherwise, on failure it returns —1. Hence we have checked for the return
value and if it is found to be -1, then we have terminated the program after displaying proper
messages.

Next the target file whose name is stored in argv[2] is opened in write mode.

Slide Number 6

If the open() function fails to open target file then we closed the source file, displayed proper
message and terminated the program.

Next, if the function epen() is successful to open target file, then a while loop runs till end of file is
not encountered. In every iteration of this loop certain number (i.e. 512) bytes are read and stored in
buffer. This we have done using read() function. This function needs the file handle from which the
contents are to be read, the buffer and the size of the buffer and it returns the number of bytes read.
The returned value n is used to write the contents read into the target file. The syntax of write() is
exactly similar to read() except, the operation. After writing the whole contents both the files are
closed using close() function.

The variable n and char array buffer[| should be declared as shown in the slide. Also to be able to
use low-level disk I/O functions, #include the files whose names are given in the slide.

Programming Expertise In C Miscellany 19]

Miscellany

In this lecture you will understand:

* Introduction to Enumerations, Structures and Unions
* What are bitwise operators

* The utility of << (Left-Shift) and >> (Right-Shift) operators

192 Miscellany Programming Expertise In C

Enumerations

The enumerated data type gives you an opportunity to invent your own data type and define what
values the variable of this data type can take .

As an example, one could invent a data type called ms (marital status) which can have three values—
single, married or divorced .Here married has same relation to the variable ms as the number 15 has
with an integer variable.

Another example is a data type called color which can have three values—red, green or blue.
The format of the enum definition is similar to that of structure.

(a) The first part declares the data type and specifies its possible values. These values are called
‘enumerators’.

(b) The second part declares variables of this data type.

Internally compiler treats enumerators as integer .Each value on the list of permissible values
corresponds to an integer starting with 0.Thus in our example single is stored as 0, married is
stored as 1 and divorced is stored as 2 .

Structures

Observe carefully the code given in the slide. Here, a variable z of struct a is declared and the
member z.i is assigned value 512. The memory organization of z shows that all the members are
stored in contiguous memory locations. The size of z comes out to be 4, which is the sum of sizes of
the individual numbers of the structure. Again on printing the individual members prints 512 for z.i
and garbage value for z.ch[0] and z.ch[1].

Unions

Let’s see one more derived data type, the Unions. Unions are derived data types, the way structures
are. The syntax of declaring, defining and accessing the members of union is similar to structures. For
unions, union keyword is used.

In the program given in slide, a union a is declared with same members as declared in the structure in
earlier slide. Then a variable z is declared. The member z.i is assigned value 512. The memory
organization of z is shown in slide. Memory is reserved for z.i only and the same memory is shared
for z.ch[0] and z.ch[1] as shown in the slide.

On printing the size of z, it prints 2. The value of z.i is printed as 512. From the binary equivalent of
512 (stored in memory as shown in the slide), for z.ch[0] the number equivalent to the binary
representation stored in low-order bit of z is printed and for z.ch[1] the number equivalent to the
binary representation stored in high-order bit of z is printed. This clarifies that union permits access
to the same memory locations in more than one way.

How Many Bytes

Now, a question arises as memory of how many bytes is allocated for a variable of union. The
program given in the slide clarifies this.

Here, a union a is declared which contains three members, a double, float and a char array of size 5.
Then a variable z is declared of type union a. The size of this variable is then printed which turns out
to be 8 bytes. All the 8 bytes are used for the double variable d. The same 8 bytes are shared by z.f[0]
and z.f[1] (4 bytes each) and again the lower 5 bytes are used by z.ch[] array. Thus, it is clear from
this arrangement that the size of the union is the size of the longest member of the union.

Programming Expertise In C Miscellany 193

Utility
Utility of union and structure together is given in this slide .This slide shows that there can be union
in a structure or a structure in a union .In this way we can also do better memory management

Bitwise Operators

One of C’s powerful features is a set of bit manipulation operators. These permit the programmer to
access and manipulate individual bits within a piece of data. Let us now find out the utility of bitwise
operators.

On declaring a char variable ch, 1 byte or 8 bits are reserved in memory. We can check whether any
bit is 1 or 0 or we can set any bits to 0 or 1.

~ (Tilde) is the one’s complement operator. On taking one’s complement of a number, all 1°s present
in the number are changed to 0°s and all 0’s are changed to 1’s. Thus, as shown in the slide, the one’s
complement of 32 i.e. 00100000 is 11011110 which is a binary equivalent of a negative number.
Hence 1 is subtracted from the resultant and again one's complement is taken which results -33.

As, one's complement operator changes the original number beyond recognition, one potential place
where it can be effectively used is in development of a file encryption utility as shown in the slide.

Bitwise Operators

Let us now see the working of bitwise ‘left shift’ (<<) and ‘right shift’ (>>) operator. The right shift
operator shifts each bit in the operand to the right. The number of places the bits are shifted depends
on the number following the operand. Note that as the bits are shifted to the right, blanks are created
on left. These blanks are always filled with zeros.

Thus, on right shifting 32 by 2 bits the right most 2 bits are dropped and from the left 2, 0-bits are
appended hence the resulting value would be 8.

The working of ‘left shift’ operator is similar to ‘right shift” operator, the only difference being that
the bits are shifted to the left, and for each bit shifted, a 0 is added to the right of the number. Thus,
on left shifting 32 by 1, the left most bit is dropped and one 0-bit is added at the beginning, hence
prints 64.

Utility Of << & >>

Having acquainted ourselves with the left shift and right shift operators, let us now see the practical
utility of these operators.

As discussed earlier, the date on which a file is created is stored as a 2-byte entry in 32-byte directory
entry of that file. For example, for the date 06/01/99 the calculation is shown in the slide. The binary
equivalent of the resulting value 9766 is stored in the two bytes. The bit configuration is shown in the
slide.

d, m,y

The program given in the slide, extracts date, month and year from the value 9766 (which is a result
of calculation done in previous slide).

Here, this value is stored in an int variable dt. To get year as a separate entity, we have right shifted
the value in dt by 9. Similarly, left shifting dt by 7, followed by right shifting by 12 yields month.
Lastly to extract the day, dt is left shifted byll and then right shifted by 11. Finally the extracted
values are printed for confirmation.

Programming Expertise In C Bitwise Operators 195

Bitwise Operators

In this lecture you will understand:

* The utility of & (Bitwise AND) operator
* How to change attributes of a file using bitwise operators
* How to create function pointers

196 Bitwise Operators Programming Expertise In C

Bitwise Operators

Some more bitwise operators are there like & (Bitwise AND), | (Bitwise OR), * (Bitwsie XOR). The
truth tables of these operators are shown in the slide.

Utility of &

The bitwise AND operator & is used to check whether a particular bit is on / off. The program shown
in the slide checks whether the bit number 3 of the given number n is on / off. Since we want to
check the bit number 3, the second operand for the AND operator should be 1 * 2% which is equal to
8. If on ANDing the result turned out to be 8, then the bit number 3 is on and if the value is 0 then the
bit is off. If the bit is on, then n is ANDed with 0xF7, the number formed by setting bits fo 1 except
the third bit, that is set to 0.

Slide Number 3

In every 32-byte file entry present in the directory, there is an attribute byte. The status of a file is
governed by the value of individual bits in this attribute byte. The AND operator can be used to check
the status of the bits of this attribute byte. The program given in the slide demonstrates how this can
be done.

Here, we have read the directory sector of floppy disk, and for all the 16 directory entries the read
only (0™ bit) and hidden (i.e. 1** bit) attribute is checked. If the read only bit is found to be on then the
bit is put to off by ANDing with OxFE. The 0™ bit is set to off.

Similarly for hidden attribute the second bit is checked and if the hidden bit is not set it is set by using
OR operator. Lastly the sector is rewritten to the floppy disk.
Calling Functions

To be able to pass control to the TSRs, we must know a mechanism by way of which we would be
able to transfer control to a routine by merely knowing the address of the routine. This mechanism is
nothing but a pointer to a function. Let us see how to declare such pointer and use it to call a function.

In the program given in the slide, we have defined a function called display(). We have also declared
its prototype. Then we have declared a pointer p. Note the way p has been declared. p is a pointer to
such a function which neither receives any parameter nor returns any value. In other words p is a
pointer to the function display().

Then we have called function display(). To call the same function, using pointer, we have stored the
address of display in p through the statement,

p = display ;
and the function is called through the statement

("p)O);
which calls display() as p holds its address.

Some Definitions
Let us try to determine the meaning of the declarations shown in the slide.
void (*p)() ; Here p is a pointer fo a function that returns nothing.
void *p() ; Here p is a function that returns a void pointer.

void (*p)(int, float) ; Here p is a pointer to a function that receives an int and float and returns
nothing.

Programming Expertise In C Bitwise Operators 197

void (*p)(int *, char **) ; Here p is a pointer to a function that receives an int pointer and pointer
to char pointer and returns nothing.

int **(*p)(char **, float *) ; Here p is a pointer to a function that receives pointer to char pointer
and a float pointer and returns pointer to int pointer.

Define

Few more examples of how a pointer to a function can be defined are given in the slide.
Having understood try to give the interpretation of the statement,
int* (*p[3])(int ¥, int **)

The declaration means that p is an array of three pointers to functions that receive int pointer and
pointer to an int pointer and returns an int pointer.

Programming Expertise In C Hardware Interaction — 1 199

Hardware Interaction - I

In this lecture you will understand:

Ways to interact with hardware

Hardware interaction, DOS perspective
Hardware interaction, Windows perspective
‘What are Ports, CMOS

How to access CMOS data

* % ¥ ¥ W

200 Hardware Interaction — 1 Programming Expertise In C

Hardware Interaction

Interaction with hardware suggests interaction with peripheral devices. However, interaction may
also involve communicating with chips present on the motherboard. other than the microprocessor.
During this interaction one or more of the following activities may be performed:

(a) Reacting to events that occur because of user’s interaction with the hardware. For example, if the
user presses a key or clicks the mouse button then our program may do something.

(b) Explicit communication from a program without the occurrence of an event. For example, a
program may want to send a character to the printer, or a program may want to read/write the
contents of a sector from the hard disk.

Let us now see how this interaction is done under different platforms.

User Initiated H/'W I/A, DOS Vs Win

The slide distinguishes hardware interaction under DOS and Windows.

Under DOS whenever an external event (like pressing a key or ticking of timer) occurs a signal called
hardware interrupt gets generated. For different events there are different interrupts. As a reaction to
the occurrence of an interrupt a table called Interrupt Vector Table (IVT) is looked up. IVT is present
in memory. It is populated with addresses of different BIOS routines during booting. Depending upon
which interrupt has occurred the Microprocessor picks the address of the appropriate BIOS routine
from IVT and transfers execution control to it. Once the control reaches the BIOS routine, the code in
the BIOS routine interacts with the hardware. Naturally, for different interrupts different BIOS
routines are called.

Under Windows too a hardware interrupt gets generated whenever an external event occurs. As a
reaction to this signal a fable called Interrupt Descriptor Table (IDT) is looked up and a
corresponding routine for the interrupt gets called. Unlike DOS the IDT contains addresses of various
Kernel routines (instead of BIOS routines). These routines are part of the Windows OS itself. When
the kemel routine is called, it in turn calls the ISR present in the appropriate device driver. This ISR
interacts with the hardware.

Prog. Initiated H/'W I/A, DOS Vs Win

As shown in the slide, different methods are used to interact with the hardware under DOS and
Windows environment.

(a) Directly interacting with the hardware

At times the programs are needed to directly interact with the hardware. For example, while
writing good video games one is required to watch the status of multiple keys simultaneously.
The library functions as well as the DOS/BIOS functions are unable to do this. At such times we
have to interact with the keyboard controller chip directly.

For this one has to have good knowledge of technical details of the chip Moreover, not every
technical detail about how the hardware from a particular manufacturer works is well
documented.

(b) Calling DOS Functions

To interact with the hardware a program can call DOS functions. These functions can either
directly interact with the hardware or they may call BIOS functions which in turn interact with
the hardware. However, since DOS functions do not have names they have to be called through
the mechanism of interrupts. This is difficult since the programmer has to remember interrupt
service numbers for calling different DOS functions.

Programming Expertise In C Hardware Interaction — 1 201

(c) Calling BIOS Functions

DOS functions can carry out jobs like console I/O, file I/O, printing, etc. For other operations
like generating graphics, carrying out serial communication, etc. the program has to call another
set of functions called ROM-BIOS functions which are to be called using interrupts and involve
heavy usage of registers.

(d) Calling Library Functions

We can call library functions which in turn can call DOS/BIOS functions to carry out the
interaction with hardware. Good examples of these functions are printf() / scanf() / getch() for
interaction with console, absread() / abswrite() for interaction with disk, bioscom() for
interaction with serial port, etc.

Under Windows explicit communication with hardware is much different than the way it was done
under DOS. This is primarily because under Windows every device is shared amongst multiple
applications running in memory. To avoid conflict between different programs accessing the same
device simultaneously Windows does not permit an application program to directly access any of the
devices. Instead it provides several API functions to carry out the interaction.

When we call an API function to interact with a device, it in turn accesses the device driver program
for the device. It is the device driver program that finally accesses the device.

Calling BIOS / DOS Routines
Steps required in calling BIOS / DOS routines are as follows -:

BIOS/DOS routines do not have names. They are invoked through ‘interrupts’. Hence, first an
interrupt is issued. An interrupt is a signal to the microprocessor that its immediate attention is
needed. The addresses of BIOS/DOS routines are stored in the Interrupt Vector Table (IVT) in DOS's
base memory. To reach the location where the address of the interrupt handler is stored, the interrupt
number is multiplied by 4. Each address is of 4 bytes in size, hence the interrupt number is to be
multiplied by 4.

After reaching the location, the address of the handler routine is picked and the current values in CPU
registers are stored onto the stack so that they can be restored when the routine terminates. The CPU
registers are then set with the values needed by the handler routine and the control is transferred to
handler routine for execution. Since these routines serve the interrupts they are called ‘Interrupt
Service Routines’.

After executing the routine, the values returned by the routine are collected into ordinary variables and
the values in stack are restored to the CPU registers. The process of restoring values from the stack is
called pop operation. After popping the values the original interrupted program resumes.

Calling Dev. Dri. Routine - Windows

The figure in the slide shows how interrupt mechanism is handled under Windows.

As explained earlier, under Windows a hardware interrupt gets generated whenever an external event
occurs. As a reaction to this signal a table called Interrupt Descriptor Table (IDT) is looked up and a
corresponding routine for the interrupt gets called. Unlike DOS the IDT contains addresses of various
Kemel routines (instead of BIOS routines). These routines are part of the Windows OS itself. When
the kernel routine is called, it in turn calls the ISR present in the appropriate device driver. This ISR
interacts with the hardware.

I/A with Disk

To actually read the contents of boot sector of the floppy disk the program makes a call to a user-
defined function called ReadSector().

202 Hardware Interaction — 1 Programming Expertise In C

The first parameter passed to ReadSector() is a string that indicates the storage device from where
the reading has to take place. The syntax for this string is \\machine name\storage-device name.
The second parameter is the logical sector number. We have specified this as 0 which means the boot
sector in case of a floppy disk. The third parameter is the number of sectors that we wish to read. This
parameter is specified as 1 since the boot sector occupies only a single sector. The last parameter is
the address of a buffer/variable that would collect the data that is read from the floppy. Here we have
passed the address of the boot structure variable b. As a result, the structure variable would be setup
with the contents of the boot sector data at the end of the function call.

ReadSector() function begins by making a call to the CreateFile() API. The CreateFile() function
opens the specified device as a file.

The first parameter of CreateFile() function is the string specifying the device to be opened. The
second parameter is a set of flags that are used to specify the desired access to the file (representing
the device) about to be opened. By specifying the GENERIC READ flag we have indicated that we
just wish to read from the file (device). The third parameter specifies the sharing access for the file
(device). Since floppy drive is a shared resource across all the running applications we have specified
the FILE SHARE READ flag. The fourth parameter indicates security access for the file (device).
Since we are not concerned with security here we have specified the value as 0. The fifth parameter
specifies what action to take if the file already exists. When using CreateFile() for device access we
must always specify this parameter as OPEN EXISTING. Since the floppy disk file was already
opened by the OS a long time back during the booting. The remaining two parameters are not used
when using CreateFile() API function for device access. Hence we have passed a 0 value for them.
If the call to CreateFile() succeeds then we obtain a handle to the file (device).

The device file mechanism allows us to read from the file (device) by setting the file pointer using the
SetFilePointer() API function and then reading the file using the ReadFile() API function. The first
parameter to SetFilePointer() is the handle of the device file that we obtained by calling the
CreateFile() function. The second parameter is the byte offset from where the reading is to begin.
We have specified the third parameter as FILE BEGIN which means the byte offset is relative to the
start of the file.

The first parameter to ReadFile() function is the handle of the file (device), the second parameter is
the address of a buffer where the read contents should be dumped. The third parameter is the count of
bytes that have to be read. The fourth parameter to ReadFile() is the address of an unsigned int
variable which is set up with the count of bytes that the function was successfully able to read. Lastly,
once our work with the device is over we should close the file (device) using the CloseHandle() API
function.

Once the contents of the boot sector have been read into the structure variable b we have displayed
the first few of them on the screen using printf().

More Calls

Since capacity of hard disks is huge, logical partitions are created on it to accommodate different
operating systems. The information about where each partition begins and ends, the size of each
partition, etc. is stored in a partition table (PT) in side 0, track 0, sector 1. This sector also contains a
Master Boot Program. The partition table indicates which is bootable partition. The partition may
contain Windows whereas the other might contain Linux and so on. The partition table as shown in
the slide stores Master Boot Program. Thus, a PT consists of data and code part. The data part begins
at 447" byte. The last two bytes in the PT are always 0x55, 0OXAA. The data part is 64 bytes and is
further divided into 4 parts of 16 bytes each. Each 16-bytes chunk consists of information about a
partition on the hard disk.

Programming Expertise In C Hardware Interaction — 1 203

Ports

Different devices are connected at different port addresses as shown in the slide. A device usually has
many device register (locations within a physical device). Each device register is assigned a unique
address within the I/O address space. Thus a device ends up working in a range of addresses.

A Port is a particular location in the I/O space. Slide shows how microprocessor interacts with
memory and I/O space. Ports are used to connect external devices fo the computer. There exist
several types of ports like serial port, parallel port, USB port, AGP port. The 16-bit address bus (Even
for windows the I/O address bus remains 6 bits) really speaking is a part of 20-bit address bus, each
address is physically connected to some hardware. For example, the address 378h (LPT1) is mapped
on to the 25 pin female connector. The dotted line in the slide indicates there is circuitry. For writing
the data to the device connected to the parallel port the microprocessor places the address on the
address bus followed by the data on the data bus.

Interaction With CMOS

The CMOS chip as shown in the slide, has a SRAM type of memory. This memory is special in that
it can retain information for a long duration while consuming negligible amount of power. The
CMOS chip’s memory is used in a computer to retain critical hardware information like system time,
system date, amount of base memory, hard disk type, etc. The chip retains this information even after
the computer has been switched OFF. This is because it has a separate auxiliary battery support that
powers it after shut down.

This chip provides two interfaces—control register and a data register. Both of these registers are I/O
mapped. The control register is used to instruct the CMOS chip to return specific information on the
data register. The port address of the CMOS control register is 70h, and that of the data register is
71h. The value that is written on the control register will decide what data is returned on the data
register. For example, if we write 00h at 70h, the CMOS chip in return places the seconds part of the
system time at port 71h. Similarly when 02h is placed at 70h, minutes are obtained at 71h. The table
given in the slide shows a more such values.

Accessing CMOS Data

The program discussed in the slide accesses the data i.e. system date and system time from CMOS
chip.

Here, we have called outportb(), which takes two parameters, the address of the control port, and
the second parameter is the value being send to the port, which here is 0x70 and 0x00 respectively.
Next, we have called inportb() to collect value from port 0x71. The seconds returned by this
function have been collected in sec. On similar lines, we have collected data for minutes, hours and
day of the month.

Slide Number 11

Here, we have collected data for month, year and day of the week, by calling outportb() and
inportb() functions. Lastly, the values thus collected have been printed. To print the appropriate
name of the day of week, we have used days array, which has been initialized with names of the days
of a week. Note that day of week returned by inport() function is an integer. The format specifier
used in printf() is %x (i.e. hex) because the values are available in BCD (Binary Coded Decimal
form).

Programming Expertise In C Hardware Interaction — 11 205

Hardware Interaction - Il

In this lecture you will understand:

Serial communication using null modem

How parallel port works

How to communicate with parallel port programmatically
How speaker works

How to play tunes using ports

206 Hardware Interaction — |1 Programming Expertise In C

Serial Communication

A common use of the “serial-port” device is to connect two computers together for transfer of data. In
this case pins other than transmit or receive are looped back (connected) to the other pins. Looping
back is something like fooling the computer to believe that it is actually connected to some serial
device. The slide shows the pins of connector for a null modem cable, which uses loop back
technique.

The “serial-port” device is commonly used by software developers to connect two computers for
testing new software. One computer runs the software while the other records the information sent by
the software. This method is often known as debugging, it helps the developers in finding errors in
their program. The cable used for connecting the two computers is known as Null Modem cable,
Debug-cable, COM port to COM port cable or simply Serial cable.

The communication is called serial communication because only 1 bit gets transmitted at a time. The
looping back of pins makes the computer think that a modem (null-modem) is actually connected to
it. All COM ports are serial - some are 9 pin some are 25 pin male connectors. All parallel ports are
25-pin female connectors.

Server

In the program given in the slide, first we have called bioscom() function. The first parameter passed
to this function specifies port number. The value 0 used here, specifies the communication port
COML. The meaning of the values used in place of second parameter is given in the slide. The second
parameter specifies the port number where operation is to be performed. The last parameter is used to
check whether data has been transmitted in an error free manner. We are not using parity hence we
have specified a value of 0. In the first call to bioscom(), we have use 0x80 i.e. 1200 baud.

Then a while loop runs, in which we have again called bioscom() function to know the status. We
have checked whether status retrieved indicates data is ready at communication port. If it is then we
have called bioscom() twice, one to receive data and the other to send character ch (received through
getche()). The loop continues till we have not pressed ESC key.

Client

In the program given in the slide, we have called bioscom() with same values as discussed in the
earlier slide. Then a while loop runs till a key is not hit. In this loop, we have called bioscom() to
send a data. The same function is called again to know the status of communication port. If the status
is ready, then we have called bioscom() again to receive data. Before collecting the data received in
ch we have anded (using bitwise & operator) it with 0x007F. This is because, when we send a
character to bioscom() it splits it into bits, adds a stop bit and then sends it bit by bit. Data read is 16
bit. Of this, lower 7 bits contain the actual data. Rest of the bits contains command completion flags
like time-out, bit lost etc.

Lastly, the data received is displayed. Client continues receive values till a key is not hit on the client.
Once hit client terminates so server-sending values has no meaning. Hence server loop (i.e. in the
server program discussed in earlier slide) is terminated by hitting Esc key.

Parallel Port Basics

Parallel ports can send or receive a byte (8-bit) at a time. Unlike the serial port, these 8-bits are
transmitted parallel to each other. Parallel port comes in the form of a 25-pin female connector.
Parallel ports are popularly used to connect printer, scanner, CD writer, zip drive, external hard disk
drive, tape backup drive, etc.

Programming Expertise In C Hardware Interaction — Il 207

Each parallel port device consists of three device registers—data, status and control. These registers
are mapped in the I/O address space and hence have port addresses. The port addresses for the three
registers are in sequential order. That is, if the data register is at address 0x408, the corresponding
status register is at 0x408 + 1 and the control register at 0x408 + 2.

The parallel port device registers are mapped to a 25 pin female connector that is present on the
backside of the CPU box. The 25 pins of the connector are mapped onto the three device registers.
The pins are the device register’s interface with the outside world.

The ground pins (18 to 25) remain at a constant voltage of 0 volts. Ground pins provide the zero
reference voltage for the connected peripherals. That is, these pins are used by the computer and the
peripheral device to agree on a common 0 volts signal. All communication between the computer and
peripheral device will be with respect to this 0 volts signal.

Data pins (2 to 9) are true logic pins. The data port pins are the actual data carriers of the parallel port
device. Whatever data we wish to send to the peripheral device is transmitted via these pins.

I/A With Parallel Port

To better understand the working of the parallel port device let us write a simple program. Let us
connect a Multi-meter across a data pin as shown in the figure given in the slide.

As we can see, pin 2 (1st data pin) is connected to the positive end of Multi-meter. The other end of
the Multi-meter is connected to the pin 25 (ground pin). Parallel ports work on TTL - Transistor to
Transistor logic. It always has a voltage range from 0 to 5v. Hence parallel port cables cannot be
longer because in transmission losses the voltage may drop. For serial communication the range is
upto 50v. Hence the cables can be longer.

Now the only thing required would be to provide +5 volts. This means that we would have to turn the
pin 2 (first bit of data register) on. The program given in the slide shows how to achieve this.

In this program out of 3 ports associated with parallel port device we are using only the data port. The
value written onto port 0x378 would go to pins 2-9. The first call to outportb() writes O to the data
register. This sets up all the data pins to 0. Then the function getch() has been called for the user to
hit a key. The second call to outportb() sends value 1 to the data register of the parallel port. Since
the binary representation of 1 is 00000001 only the first pin of the data register receives +5V signal
and rest of the data pins remain at 0V.

This example shows how simple it is to communicate with the parallel port through the ‘C’
programming language.

Program

Let us now put our knowledge of parallel port programming to work with a simple Seven Segment
(7-segment) display. Here we would connect the 7-segment display to the PC parallel port and then
display numbers from 0 — 9 on it using a loop.

The 7-Segment Display has totally 10 pins—5 at the top and 5 at the bottom. Of the 5 pins on either
end the center pin is the common ground. The balance 8 pins can be connected to the 8 data lines
from the parallel port connector through 8 resistances each of 560 Ohms as shown in figure given in
the slide. The ground pins of the 7-segment display are connected to pin number 25.

Each bit of the data register is responsible for glowing one segment of the display. With this
information available at our disposal we can easily manage to display different digits on a 7-segment
display.

The program given in the slide shows how this can be achieved. In this program we have first
constructed an array of characters. The array contains values for forming the digit by glowing suitable

208 Hardware Interaction — |1 Programming Expertise In C

segments of the 7-segment display. These values are obtained by performing bitwise OR operations
on individual segment values.

Slide Number 7

The program then uses a while loop within which we have called the standard library function
outportb(). To outportb() we have passed two parameters, first one is the port address of the data
register and the second one is the actual value we want to write to the port. The condition if (i == 10
) is used to reset the array index once it reaches 10.

On execution the program will display digits from 0 to 9 in a cyclic manner, with each digit being
displayed for exactly 1 second (1000 milliseconds).

Working of Speaker

The speaker is made to vibrate by the electrical impulses sent to it by the PC. These vibrations set the
air particles around the vibrating source in motion. As the particles bump into one another a sound is
produced. The figure given in the slide shows the working of a speaker.

The cylindrical bar (surrounded by the white coil) is actually a soft iron core. When the coil around
the core receives a pulse the soft iron core temporarily becomes a magnet. This temporary magnet
interacts with the permanent magnet. This interaction causes the diaphragm to be pushed forward.
When the pulse dies the magnetism is lost and the diaphragm returns back to its original position.
When this happens frequently we hear a sound. There are two parameters that govern the sound that
the speaker produces-frequency of the sound and its duration.

Speaker Operation

The sound frequency is controlled by the 8253 programmable Timer chip, whereas the duration has to
be controlled programmatically.

The timer chip produces signals at a default frequency of 1.19318 MHz (119318 x 10 © cycles per
second) through a clock present inside the timer chip. This frequency can be changed
programmatically.

The timer chip provides three independent channels. Through these channels signals can be sent to
separate devices. The speaker uses the signal coming from channel number 2. The timer chip can
operate in six different modes, each mode deciding the nature of the signal produced. For example,
while working in mode number 3 it always generates a square wave output.

We can communicate with the timer chip through any of the four 1/0 ports with addresses 64 through
67, which we shall discuss in next slide.

Speaker Circuit
This slide explains the working model of the speaker circuit.

CS, OUT2, CLOCK shown in the yellow block are the pins present on the chip. CS stands for Chip
Select. Its purpose is to enable/disable the chip.

There are 3 channels in 8253—0UT1, OUT2 and OUT3. The channel is a fancy term for number of
inputs or outputs. The OUT2 channel indicates that we are using second channel. Each channel can
independently drive a device.

The Pulse is sent through channel2 to OUT2 and is sent to the speaker. To manage time interval PIT
needs a clock frequency. The quartz crystal generates a base frequency of 1.19318 Mhz. The 8253
chip itself cannot generate the frequency but depends upon an external crystal to generate the
frequency. Generated frequency from the crystal is fed to the clock pin of the 8253 IC.

Programming Expertise In C Hardware Interaction — Il 209

The 8253 chip features a port 66 (also called the count port) to supply a numeric value (count) via
software. The 8253 will wait till the specified count before sending another pulse to the speaker. The
count keeps on getting decremented. When it becomes 0 a pulse is sent to the speaker.

The 8253 chip also features a control port (address 67) via which the operational mode (one of the 6
modes) of the chip can be decided. The 8255 chip is connected to 8253 and to the speaker. The 8255
chip can be used to turn on/off the speaker. This can be achieved via port 97 of the 8255 chip.

8253 — Port 67

We can communicate with the timer chip through any of the four 1/0 ports with addresses 64 through
67. The timer can be configured to mode number 3, channel number 2. This can be done by writing a
8-bit data to port number 67. The value of this 8-bit data is decided as shown in the slide.

The Control byte is a special 8-bit value send to the control port of the 8253 chip. The value sent
signifies the configuration as well as operational mode of the chip. The value we are interested in
sending to the port turns out to be 182 (10110110). This is because to drive the speaker we have to
select values as show below:

(1) Channel 2—speaker is physically connected to channel 2 of 8253.

(2) As the count specified is 16-bit & count port is only 8-bit we chose to write the value 8-bit at a
time low byte followed by high byte.

(3) Operational mode 3 is used to generate square wave pulses.
(4) Finally the count to be specified is in binary rather than BCD binary coded decimal.

Playing Tunes
The program given in the slide plays tunes.

Here, the values in float array n specifies frequency of a note to play. We are using union p since we
have to send an int to outportb() and outportb() can send only a byte at a time. Then we have sent
the value 182 (we have already discussed the meaning of bits of this value in earlier slide) to the
control port 67 using outportb() function. Next, using the inportb() function we have read the
status of speaker from port 97.

To turn on the speaker we have called outportb() function. Using this function we can turn on/off
the speaker. Since, we want to turn on the speaker, we must set the lower 2 bits of the value present at
port number 97 to 1, without disturbing the other bits. This we have achieved by using bitwise OR
operator.

To control the pitch of the speaker we should provide a frequency number to the timer and then turn
on the speaker for the duration of the beep. The frequency number is actually a counter value that
tells the PC how many of cycles to wait before sending another pulse. A smaller count value will
cause the pulses to be sent quicker, resulting in a higher pitch. The count value can be calculated by
the following formula:

count=1193280/n[i];
where, n[i] is the frequency of the note that we wish to play.

We have played the notes by calculating the count value for the frequency and sending it to the port
66 through outportb(). This is repeated for all the frequency values of n[] through a for loop.

Lastly we have turned off the speaker by calling outportb() function where we have sent status to
port 97.

Programming Expertise In C Windows — I 211

Windows - I

In this lecture you will understand:

* How Windows is Different
* Advantage of Windows Programming model over DOS model

212 Windows — I Programming Expertise In C

How Windows Is Different

In this lecture we would explore how C programming is done under Windows. Let us first see some
of the changes that have happened under Windows environment.

Under 16-bit environment (DOS) the size of integer is of 2 bytes. As against this, under 32-bit
environment an integer is of 4 bytes. Hence its range is -2147483648 to +2147483647. Thus there is
no difference between an int and a long int. When we know that the number to be stored in it is
hardly going to exceed hundred. In such a case it would be more sensible to use a short int since it is
only 2 bytes long.

In data types COLORREF, HANDLE, etc. given in the slide are merely typedef’s of the normal
integer data type.

A typical C under Windows program would contain several such typedefs. There are two reasons
why Windows-based C programs heavily make use of typedefs. These are:

A typical Windows program is required to perform several complex tasks. For example a program
may print documents, send mails, perform file I/O, manage multiple threads of execution, draw in a
window, play sound files, perform operations over the network apart from normal data processing
tasks. Naturally a program that carries out so many tasks would be very big in size. In such a program
if we start using the normal integer data type to represent variables that hold different entities we
would soon lose track of what that integer value actually represents. This can be overcome by
suitably typedefining the integer as shown in the slide at the top right corner block.

At several places in Windows programming we are required to gather and work with dissimilar but
inter-related data. This can be done using a structure. But when we define any structure variable we
are required to precede it with the keyword struct. This can be avoided by using typedef as shown in
the slide (at bottom right corner block), such as RECT r and PRECT pr.

Under 32-bit environment like Windows several programs reside and work in memory at the same
time. Hence it is known as a multi-tasking environment. But the moment there are multiple programs
running in memory there is a possibility of conflict if two programs simultaneously access the
machine resources. This is done by the Microprocessor & OS in the memory management. This is
explained in the next paragraph.

Under Windows several applications run in memory simultaneously. The maximum allowable
memory—]1 MB—that was used in 16-bit environment was just too small for this. Hence Windows
had to evolve a new memory management model. This operation is often called page-out operation.
Here page stands for a block of memory (usually of size 4096 bytes). When that part of the program
that was paged out is needed it is brought back into memory (called page-in operation) and some
other programs (or their parts) are paged out. This keeps on happening without a common user’s
knowledge all the time while working with Windows.

All devices under Windows are shared amongst all the running programs. Hence no program is
permitted a direct access to any of the devices. The access to a device is routed through a device
driver program, which finally accesses the device. There is a standard way in which an application
can communicate with the device driver. It is device driver’s responsibility to ensure that multiple
requests coming from different applications are handled without causing any conflict.

DOS Programming Model

Typical 16-bit environments like DOS use a sequential programming model. In this model programs
are executed from top to bottom in an orderly fashion. In this programming model it is the program
and not the operating system that determines which function gets called and when. The operating
system simply loads and executes the program and then waits for it to finish. If the program wishes it
can take help of the OS to carry out jobs like console I/O, file I/O, printing, etc. For other operations

Programming Expertise In C Windows — I 213

like generating graphics, carrying out serial communication, etc. the program has to call another set
of functions called ROM-BIOS functions.

Unfortunately the DOS functions and the BIOS functions do not have any names. Hence to call them
the program had to use a mechanism called interrupts. This is a messy affair since the programmer
has to remember interrupt numbers for calling different functions. Moreover, communication with
these functions has to be done using CPU registers. This lead to lot of difficulties since different
functions use different registers for communication. To an extent these difficulties are reduced by
providing library functions that in turn call the DOS/BIOS functions using interrupts. But the library
doesn’t have a parallel function for every DOS/BIOS function. DOS functions either call BIOS
functions or directly access the hardware.

At times the programs are needed to directly interact with the hardware. This has to be done because
either there are no DOS/BIOS functions to do this, or if they are there their reach is limited.

There are several limitations in the DOS programming model. These have been listed below:

No True Reuse: The library functions that are called from each program become part of the
executable file ((EXE) for that program. Thus the same functions get replicated in several EXE files,
thereby wasting precious disk space.

Messy calling mechanism: It is difficult to remember interrupt numbers and the registers that are to
be used for communication with DOS/BIOS functions

Hardware dependency: DOS programs are always required to bother about the details of the hardware
on which they are running. This is because for every new piece of hardware introduced there are new
interrupt numbers and new register details

Inconsistent look & feel: Every DOS program has a different user interface that the user has to get
used to before he can start getting work out of the program. For example, successful DOS-based
software like Lotus 1-2-3, FoxPro, WordStar offered different types of menus. This happened
because DOS/BIOS doesn’t provide any functions for creating user interface elements like menus..

All these limitations mentioned above are eliminated under Windows (as shown in the next slide).

Windows Programming Model

Windows programming model is designed with a view to:
Permit true reuse of commonly used functions

A C under Windows program calls several API functions during course of its execution. The API
functions are stored in special files that have an extension .DLL (Dynamic Link Libraries). A DLL is
a binary file that provides a library of functions. The functions present in DLLs can be linked during
execution. These functions can also be shared between several applications running in Windows.
Since linking is done dynamically the functions do not become part of the executable file.

Eliminate the messy calling mechanism of DOS

Instead of calling functions using Interrupt numbers and registers Windows provides functions within
itself, which can be called using names. These functions are called API (Application Programming
Interface) functions.

Provide consistent look and feel for all applications

Each program offers a consistent and similar user interface. As a result, user doesn’t have to spend
long periods of time mastering a new program. Every program occupies a window—a rectangular
area on the screen. A window is identified by a title bar.

214 Windows — I Programming Expertise In C

Eliminate hardware dependency

A Windows program can always call Windows API functions. Thus an application can easily
communicate with OS and OS can also communicate with application. At no time does the
application carry out any direct communication with the devices. Any differences that may be there in
the new set of mouse and keyboard would be handled by the device driver and not by the application
program. So this eliminates H/W dependency.

First Windows Program
Let us now discuss a simple windows program.

As in DOS main() is the entry point WinMain() is the entry in the Windows. It receives four
parameters. The first is an unsigned int and the second is a pointer to a char. These macros are
defined in ‘windows.h’. This header file must always be included while writing a C program under
Windows. Here, HINSTANCE and LPSTR are nothing but typedefs.

__stdcall is a calling convention that pass arguments to functions from right to left. In case of
__stdcall the stack is cleaned up by the called function. All API functions use stdcall calling
convention. If not mentioned, cdecl calling convention is assumed by the compiler.

The variable h is the ‘instance handle” for the running application. Windows creates this ID number
when the application starts. A handle is simply a 32-bit number that refers to an entity. The entity
could be an application, a window, an icon, a brush, a cursor, a bitmap, a file, a device or any such
entity. Then hp is a remnant of earlier versions of Windows and is no longer significant. Now it
always contains a value 0. It is being persisted with only to ensure backward compatibility. The
variable s is a pointer to a character string containing the command line arguments passed to the
program. This is similar to the argv, arge parameters passed to main() in a DOS program. The
variable n is an integer value that is passed to the function. This integer tells the program whether the
window that it creates should appear minimized, as an icon, normal, or maximized when it is
displayed for the first time.

The MessageBox() function receives first parameter as handle to the owner window of the message
box to be created. If this parameter is NULL, the message box has no owner window. Second
parameter is a pointer to a null-terminated string that contains the message to be displayed. Third
parameter is pointer to a null-terminated string that contains the dialog box fitle. If this parameter is
NULL, the default title “Error” is displayed. The last parameter specifies the contents and behavior of
the dialog box.

Refurning 0 from WinMain() indicates success, whereas, returning a nonzero value indicates failure.
When the program is executed the MessageBox() function pops up a message box whose fitle is
“Title’ and which contains a message ‘Hello!”, with an ‘OK’ button on it.

Command Line Arguments

The program given in the slide illustrates how to read command line arguments. The command line
arguments can be supplied to the program by executing it from Start | Run as shown in the slide.
‘myapp.exe’ is the name of our application, whereas, ‘abc ijk xyz’ represents command line
arguments. The parameter s points to the string ‘abc ijk xyz’.

Programming Expertise In C Windows — |1 215

Windows - Il

In this lecture you will understand:

Creating a window

216 Windows — 11 Programming Expertise In C

Window Elements

The slide shows various elements of a window.

Creating A Window

To actually create a window we need to call the APl function CreateWindow(). This function
requires several parameters including the window class. Windows insists that a window class should
be registered with it before we attempt to create windows of that type. Once a window class is
registered we can create several windows of that type. Each of these windows would enjoy the same
properties that have been registered through the window class. There are several predefined window
classes. Some of these are BUTTON, EDIT LISTBOX, etc. Our program has created one such
window using the predefined BUTTON class.

The second parameter passed to CreateWindow() indicates the text that is going to appear on the
button surface. The third parameter specifies the window style. WS_OVERLAPPEDWINDOW is a
commonly used style. The next four parameters specify the window’s initial position and size—the x
and y screen coordinates of the window’s top left corner and the window’s width and height in pixels.
The next three parameters specify the handles to the parent window, the menu and the application
instance respectively. The last parameter is the pointer to the window-creation data.

Note that CreateWindow() merely creates the window in memory. We still are to display it on the
screen. This can be done using the ShowWindow() API function. CreateWindow() returns handle
of the created window. Our program uses this handle to refer to the window while calling
ShowWindow(). The second parameter passed to ShowWindow() signifies whether the window
would appear minimized, maximized or normal. If the value of this parameter is
SW_SHOWNORMAL we get a hormal sized window, if it is SW_SHOWMINIMIZED we get a
minimized window and if it is SW_SHOWMINIMIZED we get a maximized window. We have
passed nCmdShow as the second parameter. This variable contains SW_SHOWNORMAL by
default. Hence our program displays a normal sized window. The WS_OVERLAPPEDWINDOW
style is a collection of the following styles:

WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX |
WS_MAXIMIZEBOX

On executing this program a window and a message box appears on the screen as shown in the slide.
The window and the message box disappear as soon as we click on OK. This is because on doing so
execution of WinMain() comes to an end and moreover we have made no provision to interact with
the window.

You can try to remove the call to MessageBox() and see the result. You would observe that no
sooner does the window appear it disappears. Thus a call to MessageBox() serves the similar
purpose as getch() does in sequential programming.

More Windows

In the previous slide we learnt to create a window let us now try to create several windows on the
screen. This can be done using CreateWindow() and ShowWindow() function with in the for loop.
Note that each window created in this program is assigned a different handle. You may experiment a
bit by changing the name of the window class to EDIT and see the result.

Programming Expertise In C Windows —III 217

Windows - 111

In this lecture you will understand:

* What is Event Driven Programming Model
* How to create and display a real world window

218 Windows — I11 Programming Expertise In C

Interaction — Event Driven Model

When a user interacts with a Windows program a lot of events occur. For each event a message is
sent to the program and the program reacts to it. Since the order in which the user would interact with
the user-interface elements of the program cannot be predicted the order of occurrence of events, and
hence the order of messages. also becomes unpredictable. As a result, the order of calling the
functions in the program (that react to different messages) is dictated by the order of occurrence of
events. Hence this programming model is called ‘Event Driven Programming Model’.

There can be hundreds of ways in which the user may interact with an application. In addition to this
some events may occur without any user interaction. For example, events occur when we create a
window, when the window’s contents are to be drawn, etc. Not only this, occurrence of one event
may trigger a few more events. Thus literally hundreds of messages may be sent to an application
thereby creating a chaos. Naturally, a question comes—in which order would these messages get
processed by the application. Order is brought to this chaos by putting all the messages that reach the
application into a ‘Queue’. The messages in the queue are processed in First In First Out (FIFO)
order. In fact the OS maintains several such queues. There is one queue, which is common for all
applications. This queue is known as ‘System Message Queue’(SMQ). In addition there is one queue
per application. Such queues are called ‘Application Message Queues’(AMQ). Let us understand the
need for maintaining so many queues.

When we click a mouse and an event occurs the device driver posts a message into the SMQ. The OS
retrieves this message finds out with regard to which application the message has been sent. Next it
posts a message into the AMQ of the application in which the mouse was clicked.

Each Message has a unique ID (address) called window message (WM). For example
WM LBUTTONDOWN message is passed when the left mouse button is depressed. Similarly for
WM MOUSEMOVE (when mouse is moving), WM CREATE (when window is created using the
CreateWindow() function). All these handlers are #defined in the windows.h file.

A Real World Window

Creating and displaying a window on the screen is a 4-step process. These steps are shown in the
slide:

Creation of a window class involves setting up of elements of a structure called WNDCLASSEX
This structure contains several elements. They govern the properties of the window. Registration of a
window class, creation of a window and displaying of a window involves calling of API functions.
RegisterClassEx(), CreateWindow() and ShowWindow() respectively.

In WinMain() message is retrieved from the message queue by calling the API function
GetMessage(). This would pick the message info from the message queue and place it in the
structure variable passed to it. After picking up the message from the message queue we need to
process it. This is done by calling the DispatchMessage() API function.

The DispatchMessage function dispatches a message to a window procedure WndProc(). It is
typically used to dispatch a message retrieved by the GetMessage() function. In InitInstance()
while filling the WNDCLASSEX structure one of the elements has been set up with the address of a
user-defined function called WndProc().Using this address DispatchMessage() calls the function
WndProc().

Program

Suppose we wish to create a window and draw a few shapes in it. For creating such a window there is
no standard window class available. Hence we would have to create our own window class, register it
with Windows OS and then create a window on the basis of it.

Programming Expertise In C Windows —III 219

As expected WinMain() starts off by calling the function InitInstance() present in ‘helper.h’ file.
This file has been #included at the beginning of the program. Remember to copy this file to your
project directory—the directory in which you are going to create this program.

Once the window has been created and displayed let us see how we can interact with it. As and when
the user interacts with the window—by stretching its boundaries or clicking the buttons in the title
bar, etc. a suitable message is posted into the message queue of our application. Our application
should now pick them up from the message queue and process them.

A message contains a message ID and some other additional information about the message. Since it
is difficult to memorize the message IDs they have been suitably #defined in ‘windows.h’. The
message ID and the additional information are stored in a structure called MSG.

As explained earlier, in WinMain() this MSG message structure is retrieved from the message queue
by calling the API function GetMessage(). The first parameter passed to this function is the address
of the MSG structure variable. GetMessage() would pick the message info. from the message queue
and place it in the structure variable passed to it. Don’t bother about the other parameters right now.

After picking up the message from the message queue we need to process it. This is done by calling
the DispatchMessage() API function.

Since several messages get posted into the message queue picking of the message and processing it
should be done repeatedly. Hence calls to GetMesage() and DispatchMessage() have been made in
a while loop in WinMain(). When GetMessage() encounters a message with ID WM_QUIT it
returns a 0. Now the control comes out of the loop and WinMain() comes to an end.

Slide Number 4

As we saw in the previous section, for every message picked up from the message queue the control
is transferred to the WndProc() function. This function is shown below:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM
1Param)

This function always receives four parameters. The first parameter is the handle to the window for
which the message has been received. The second parameter is the message ID, whereas, the third
and fourth parameters contain additional information about the message.

LRESULT is a typedef of a long int and represents the return value of this function. CALLBACK
is a typedef of _ stdcall. This typedef has been done in ‘windows.h’. CALLBACK indicates that
the WndProc function has been registered with Windows (through WNDCLASSEX structure in
InitInstance()) with an intention that Windows would call this back (through DispatchMessage()
function).

In the WndProc() function we have checked the message ID using a switch. If the ID is
WM _DESTROY then we have called the function OnDestroy(). This message is posted to the
message queue when the user clicks on the ‘Close Window" button in the title bar. In OnDestroy()
function we have called the API function PostQuitMessage(). This function posts a WM _QUIT
message into the message queue. As we saw earlier, when this message is picked up the message loop
and WinMain() is terminated.

For all messages other than WM _DESTROY the control lands in the default clause of switch. Here
we have simply made a call to DefWindowProc() API function. This function does the default
processing of the message that we have decided not to tackle. The default processing for different
message would be different. For example on double clicking the title bar DefWindowProc()
maximizes the window.

220 Windows — I11 Programming Expertise In C

Actually speaking when we close the window a WM_CLOSE message is posted into the message
queue. Since we have not handled this message the DefWindowProc() function gets called to tackle
this message. The DefWindowProc() function destroys the window and places a WM_DESTROY
message in the message queue. As discussed earlier, in WndProc() we have made the provision to
terminate the application on encountering WM _DESTROY.

Working

As explained earlier, the whole process is represented in the form of flow chart. A very clear
understanding of it would help you make a good Windows programmer.

Graphics

World has progressed much beyond 16 colors and 640 x 480 resolution graphics that Turbo C/C++
compilers offered under MS-DOS environment. Today we are living in a world of 1024 x 768
resolution offering 16.7 million colors. Graphical menus, icons, colored cursors, bitmaps, wave files
and animations are the order of the day.

Drawing In The Window

Drawing in Windows is device independent. Device independence means that the same program
should be able to work using different screens, keyboards and printers without modification to the
program. Windows takes care of the hardware, allowing the programmer to concentrate on the
program itself. The key to this ‘device independence’ is Windows’ use of a ‘device context.

Windows programs do not send data directly to the screen or printer. A Windows program knows
where (screen/printer) its output is being sent. However, it does not know how it would be sent there,
neither does it needs to bother to know this. This is because Windows uses a standard and consistent
way to send the output to screen/printer. This standard way uses an entity called Device Context, or
simply a DC. Different DC’s are associated with different devices. For example, a screen DC is
associated with a screen; a printer DC is associated with a printer, etc. Any drawing that we do using
the screen DC is directed to the screen. Similarly, any drawing done using the printer DC is directed
to the printer. Thus, the only thing that changes from drawing to screen and drawing to printer is the
DC that is used.

A windows program obtains a handle (ID value) for the screen or printer’s DC. The output data is
sent to the screen/printer using its DC, and then Windows and the Device Driver for the device takes
care of sending it to the real hardware. The advantage of using the DC is that the graphics and text
commands that we send using the DC are always the same, regardless of where the physical output is
showing up.

The part of Windows that converts the Windows graphics function calls to the actual commands sent
to the hardware is the GDI, or Graphics Device Interface. The GDI is a program file called
GDI32.DLL and is stored in the Windows System directory.

The steps involved in creating device context and drawing shapes are shown in the slide.
Hello Windows

We would begin our tryst with graphics programming under windows by displaying a message
“Hello Windows™ in different fonts. Note that though we are displaying text under Windows even
text gets drawn graphically in the window.

The code given in this slide is similar to the earlier one.

Programming Expertise In C Windows —III 221

Slide Number 9

Drawing to a window involves handling the WM _PAINT message. This message is generated
whenever the client area of the window needs to be redrawn. This redrawing would be required in the
following situations:

(a) When the Window is displayed for the first time.
(b) When the window is minimized and then maximized.

(c) When some portion of the window is overlapped by another window and the overlapped window
is dismissed.

(d) When the size of the window changes on stretching its boundaries.
(e) When the window is dragged out of the screen and then brought back into the screen

When the switch-case structure inside WndProc() finds that the message ID passed to WndProc()
is WM_PAINT., it calls the function OnPaint().

Slide Number 10

In OnPaint() we have called the API function BeginPaint(). This function obtains a handle to the
device context. Additionally it also fills the PAINTSTRUCT structure with information about the
area of the window, which needs to be repainted. The PAINTSTRUCT structure contains information
that can be used to paint the client area of a window (invalid rectangle).

We have setup a LOGFONT structure f. This structure is used to indicate the font properties like
font name, font height, italic or normal, etc. The properties that we have not setup in the loop are all
initialized to 0. Once the font properties have been setup we have called the CreateFontIndirect()
API function to create the font. This function loads the relevant font file.

Then using the information in the font file and the font properties setup in the LOGFONT structure it
creates a font in memory. CreateFontIndirect() returns the handle to the font created in memory.
This handle is then passed to the SelectObject() API function to get the font into the DC. This
function returns the handle to the existing font in the DC, which is preserved in heldfont variable.
Next we have used the SetTextColor() API function fo set the color of the text to be displayed
through TextOut(). The RGB() macro uses the red, green and blue component values to generate a
32-bit color value. Note that each color component can take a value from 0 to 255. To TextOut() we
have to pass the handle to the DC, position where the text is to be displayed, the text to be displayed
and its length.

With hfont only one font can be associated at a time. Hence before associating another font with it
we have deleted the existing font using the DeleteObject() API function. Then we have called the
EndPaint() API function to release the DC handle. If not released we would be wasting precious
memory, because the device context structure would remain in memory but we would not be able
access it.

Programming Expertise In C

Windows — IV

(3]

Windows - IV

In this lecture you will understand:

* What is Device Context
* How to perform Graphics under Window

224 Windows — IV Programming Expertise In C

Drawing Shapes

Let us now discuss a simple program that displays different shapes in a window, as shown in the
slide.

The Program

For drawing any shape we need a pen to draw its boundary and a brush to paint the area enclosed by
it. The DC contains a default pen and brush. The default pen is a solid pen of black color and the
default brush is white in color. In this program we have used the default pen and a blue colored solid
brush for drawing the shapes.

As before, we begin by obtaining a handle to the DC using BeginPaint() function. For creating a
solid colored brush we need to call the CreateSolidBrush() API function. The second parameter of
this function specifies the color of the brush. The function returns the handle of the brush, which we
have preserved in the hbr variable. Next we have selected this brush in the DC. The handle of the
default brush in DC is collected in the holdbr variable.

Once we have selected the brush into the DC we are ready to draw the shapes. For drawing the line
we have used MoveToEx() and LineTo() API functions. Similarly for drawing a rectangle we have
used the Rectangle() function.

The RoundRect() function draws a rectangle with rounded corners. In RoundRect (x1, y1, x2, v2,
x3, ¥3), x1, y1 represents the x and y-coordinates of the upper-left corner of the rectangle. Likewise,
x2. y2 represent coordinates of the bottom right corner of the rectangle. x3, y3 specify the width and
height of the ellipse used to draw the rounded corners(as shown in the slide).

Note that rectangle and the rounded rectangle are drawn from x1, y1 up to x2-1, y2-1. Parameters of
Ellipse() specify coordinates of bounding rectangle of the ellipse.

Slide Number 3

The Pie() function draws a pie-shaped wedge by drawing an elliptical arc whose center and two
endpoints are joined by lines. The center of the arc is the center of the bounding rectangle specified
by x1, y1 and x2, y2. In Pie(x1, y1, x2, ¥2, x3, ¥3, x4, y4), x1, y1 and x2, y2 specify the x and y-
coordinates of the upper left corner and bottom right corner respectively, of the bounding rectangle.
x3, y3 and x4, y4 specify the x and y-coordinates of the arc’s starting point and ending point
respectively.

In Polygon (IpPoints, nCount), IpPoints points to an array of points that specifies the vertices of the
polygon. Each point in the array is a POINT structure. nCount specifies the number of vertices
stored in the array. The system closes the polygon automatically, if necessary, by drawing a line from
the last vertex to the first.

Once we are through with drawing the shapes the old brush is selected back in the DC and then the
brush created by us is deleted using DeleteObject() function and EndPaint() API function to
release the DC handle.

Pen Types

In the previous program we have used the default solid black pen of thickness 1 pixel. We can create
pens of different style, color and thickness to do our drawing. In the slide, the OnPaint() handler
shows how this can be achieved.

A new pen can be created using the CreatePen() API function. This function needs three
parameters—pen style, pen thickness and pen color. Different macros like PS SOLID, PS DOT, etc.

Programming Expertise In C Windows — IV 225

have been defined in ‘windows.h’ to represent different pen styles. Note that for pen styles other than
PS SOLID the pen thickness has fo be 1 pixel.

Brush Types

The way we can create different types of pens, we can also create three different types of brushes.
These are—solid brush, hatch brush and pattern brush. Consider program given in the slide that
shows how to build these brushes and then use them to fill rectangles.

In the OnPaint() handler we have drawn three rectangles—first using a solid brush, second using a
hatched brush and third using a pattern brush. Creating and using a solid brush and hatched brush is
simple. We simply have to make calls to CreateSolidBrush() and CreateHatchBrush()
respectively. For the hatch brush we have used the style HS CROSS There are several other styles
defined in ‘windows.h’ that you can experiment with.

For creating a pattern brush we need to first create a bitmap (pattern). Instead of creating this pattern,
we have used a readymade bitmap file present on your hard disk.

When we compile such a program we usually want these resources to become a part of our EXE file.
If so done we do not have to ship these resources separately. To be able to use a resource (bitmap file
in our case) it is not enough to just copy it in the project directory. Instead we need to carry out the

steps
(a) From the ‘Insert’ menu option of VC++ 6.0 select the Resource” option.
(b) From the dialog that pops up select ‘bitmap’ followed by the import button.
(c) Select the suitable .bmp file.

(d) From the ‘File’ menu select the save option to save the generated resource script file
(Scriptl.rc). When we select ‘Save’ one more file called ‘resource.h’ also gets created.

(e) Add the ‘Scriptl.rc’ file to the project using the Project | Add to Project | Files option.

While using the bitmap in the program it is always referred using an id. The id is #defined in the file
‘resource.h’. Somewhere information has to be stored linking the id with the actual .bmp file on the
disk. This is done in the ‘Scriptl.rc’ file. We need to include the ‘resource.h’ file in the program.

Slide Number 6

To create the pattern brush we first need to load the bitmap in memory. We have done this using the
LoadBitmap() API function. The first parameter passed to this function is the handle to the instance
of the program. When InitInstance() function is called from WinMain() it stores the instance
handle in a global variable hInst. We have passed this hInst to LoadBitmap(). The second
parameter passed to it is a string representing the bitmap. This string is created from the resource id
using the MAKEINTRESOURCE macro. The LoadBitmap() function returns the handle to the
bitmap. This handle is then passed to the CreatePatternBrush() function. This brush is then
selected into the DC and then a rectangle is drawn using it.

Note that if the size of the bitmap is bigger than the rectangle being drawn then the bitmap is suitably
clipped. On the other hand if the bitmap is smaller than the rectangle it is suitably replicated. While
doing the clean up firstly the brush is deleted followed by the bitmap.

Programming Expertise In C Windows — V 227

Windows - V

In this lecture you will understand:

How to perform freehand drawing

How to Capture Mouse

How to displaying Bitmap

How to write program that performs animation

* ¥ #* #*

228 Windows — V Programming Expertise In C

Freehand Drawing

PaintBrush provides a facility to draw a freehand drawing-using mouse. We too can achieve this. We
can indicate where the freehand drawing begins by clicking the left mouse button. Then as we move
the mouse on the table with the left mouse button depressed the freehand drawing should get drawn
in the window. This drawing should continue till we do not release the left mouse button.

The mouse input comes in the form of messages. For free hand drawing we need to tackle three
mouse messages WM _LBUTTONDOWN for left button click, WM _MOUSEMOVE for mouse
movement and WM_LBUTTONUP for releasing the left mouse button.

Slide Number 2

Let us now discuss each mouse handler. When the WM _LBUTTONDOWN message arrives the
WndProc() function calls the handler OnLButtonDown(). While doing so, we have passed the
mouse coordinates where the click occurred. These coordinates are obtained in IParam in
WndProc(). In IParam the low order 16 bits contain the current X - coordinate of the mouse whereas
the high order 16 bits contain the y — coordinate as shown in the slide. The LOWORD and
HIWORD macros have been used to separate out these x and y - coordinates from 1Param.

Slide Number 3

In OnLButtonDown() we have preserved the starting point of freehand in global variables x1 and
y1. If in the process of drawing the freehand the mouse cursor goes outside the client area then the
window below our window would start getting mouse messages. So our window would not receive
any messages. If this has to be avoided then we should ensure that our window continues to receive
mouse messages even when the cursor goes out of the client area of our window. The process of
doing this is known as mouse capturing.

We have captured the mouse in OnLButtonDown() handler by calling the API function
SetCapture(). As a result, the program continues to respond to mouse events during freehand
drawing even if the mouse is moved outside the client area.

In the OnLButtonUp() handler we have released the captured mouse by calling the
ReleaseCapture() API function.

Slide Number 4

When OnMouseMove() gets called it checks whether the left mouse button stands depressed. If it
stands depressed then the flags variable contains MK LBUTTON. If it does, then the current mouse
coordinates are set up in the global variables x2, y2. A line is then drawn between x1, y1 and x2. y2
using the functions MoveToEx() and LineTo(). Next time around x2, y2 should become the starting
of the next line. Hence the current values of x2, y2 are stored in x1, y1.

Note that here we have obtained the DC handle using the API function GetDC(). This is because we
are carrying out the drawing activity in reaction to a message other than WM _PAINT. Also, the
handle obtained using GetDC() should be released using a call to ReleaseDC() function.

DC, A Color Look

Now that we have written a few programs and are comfortable with idea of selecting objects like font,
pen and brush into the DC, it is time for us to understand how Windows achieves the device
independent drawing using the concept of DC. In fact a DC is nothing but a structure that holds
handles of various drawing objects like font, pen, brush, etc. A screen DC and its working is shown
in the slide

(a) The DC doesn’t hold the drawing objects like pen, brush, etc. It merely holds their handles.

Programming Expertise In C Windows — V 229

(b) With each DC a default monochrome bitmap of size 1 pixel x 1 pixel is associated.

(c) Default objects like black pen, white brush, etc. are shared by different DCs in same or different
applications.

(d) The drawing objects that an application explicitly creates can be shared within DCs of the same
application, but is never shared between different applications.

(e) Two different applications (Appl and App2) would need two different DCs even though both
would be used to draw to the same screen. In other words with one screen multiple DCs can
exist.

() A common Device Driver would serve the drawing requests coming from different applications.
(Truly speaking the request comes from GDI functions that our application calls).

Screen and printer DC is OK, but what purpose would a memory DC serve? Well, that is what the
next slide would explain.

Display A Bitmap

We are familiar with drawing normal shapes on screen using a device context. How about drawing
images on the screen? Windows does not permit displaying a bitmap image directly using a screen
DC. This is because there might be color variations in the screen on which the bitmap was created
and the screen on which it is being displayed. To account for such possibilities while displaying a
bitmap Windows uses a different mechanism—a ‘Memory DC’

The way anything drawn using a screen DC goes to screen, anything drawn using a printer DC goes
to a printer, similarly anything drawn using a memory DC goes to memory (RAM). But where in
RAM—in the 1 x 1 pixel bitmap whose handle is present in memory DC. (Note that this handle was
of little use In case of screen/printer DC). Thus if we attempt to draw a line using a memory DC it
would end up on the 1 x 1 pixel bitmap. You would agree 1 x 1 is too small a place to draw even a
small line. Hence we need to expand the size and color capability of this bitmap. To do this we have
to just replace the handle of the 1 x 1 bitmap with the handle of a bigger and colored bitmap object.
This is shown in the slide.

Whatever we draw here would get drawn on the bitmap but would still not be visible. We can make it
visible by simply copying the bitmap image (including what has been drawn on it) to the screen DC
by using the API function BitBIt().

Before transferring the image to the screen DC we need to make the memory DC compatible with the
screen DC. Here making compatible means making certain adjustments in the contents of the
memory DC structure. Looking at these values the screen device driver would suitably adjust the
colors when the pixels in the bitmap of memory DC is transferred to screen DC using BitBlt()
function.

Program

In OnPaint() we have retrieved the screen DC using the BeginPaint() function. Next we have
loaded the vulture bitmap image in memory by calling the LoadBitmap() function. Its usage is
similar to what we saw while creating a pattern brush in an earlier program. Then we have created a
memory device context and made its properties compatible with that of the screen DC. To do this we
have called the API function CreateCompatibleDC(). Note that we have passed the handle to the
screen DC to this function. The function in turn returns the handle to the memory DC. After this we
have selected the loaded bitmap into the memory DC. Lastly, we have performed a bit block transfer
(a bit by bit copy) from memory DC to screen DC using the function BitBIt(). As a result of this the
vulture now appears in the window.

We have made the call to BitBlt() as shown below:

230 Windows — V Programming Expertise In C

BitBIt (hdc, 10, 20, 190, 220, hmemdc, 0, 0, SRCCOPY) ;

Let us now understand its parameters. These are as under:
hdc — Handle to target DC where the bitmap is to be blitted
10, 20 — Position where the bitmap is to be blitted

190, 220 — Width and height of bitmap being blitted

0. 0 — Top left corner of the source image. If we give 10, 20 then the image from 10, 20 to bottom
right corner of the bitmap would get blitted.

SRCCOPY — Specifies one of the raster-operation codes. These codes define how the color data for
the source rectangle is to be combined with the color data for the destination rectangle to achieve the
final color. SRCCOPY means that the pixel color of source should be copied onto the destination
pixel of the target.

Animation

Speed is the essence of life. So having the ability to display a bitmap in a window is fine, but if we
can add movement and sound to it then nothing like it.

Program

From the WndProc() function you can observe that we have handled two new messages here—
WM _CREATE and WM_TIMER. For these messages we have called the handlers OnCreate()
and OnTimer() respectively. This is explained in next slide.

OnCreate()

The WM_CREATE message arrives whenever a new window is created. Since usually a window is
created only once, the one-time activity that is to be carried out in a program is usually done in
OnCreate() handler. In our program to make the ball move we need to display it at different places
at different times. To do this it would be necessary to blit the ball image several times. However, we
need to load the image only once. As this is a one-time activity it has been done in the handler
function OnCreate().

You are already familiar with the steps involved in preparing the image for blitting—loading the
bitmap, creating a memory DC, making it compatible with screen DC and selecting the bitmap in the
memory DC.

Apart from preparing the image for blitting we have also done some intialialisations like setting up
values in some variables to indicate the initial position of the ball. We want that every time we run
the application the initial position of the ball should be different. To ensure this we have generated its
mitial x, y coordinates using the standard library function rand(). However, this function doesn’t
generate true random numbers. To ensure that we do get true random numbers, somehow we need to
tie the random number generation with time, as time of each execution of our program would be
different. This has been achieved by making the call

srand (time (NULL));
Here time() is function that returns the time. We have further passed this time to the srand()
function.

To be able to use rand() and srand() functions include the file ‘stdlib.h’. Similarly for time()
function to work include the file ‘time.h’.

Programming Expertise In C Windows — V 231

We have also called the SetTimer() function. This function tells Windows to post a message
WM_TIMER info the message queue of our application every 50 milliseconds. This is explained in
the next slide.

One application can set up multiple timers to do different jobs at different intervals. Hence we need to
pass the id of the timer that we want to set up to the SetTimer() function. In our case we have
specified the ID as 1.

For multiple timers Windows would post multiple WM_TIMER messages. Each time it would pass
the timer ID as additional information about the message.

OnDestroy()

The WM_DESTROY message is sent when a window is being destroyed. It is sent to the window
procedure of the window being destroyed after the window is removed from the screen.

A window receives this message through its WndProc() function.

When the application terminates we have to instruct Windows not to send WM _TIMER messages to
our application any more. For this we have called the KillTimer() API function passing to it the ID
of the timer. Deleting the GDI (Graphical Device Interface) object by freeing all system storage
associated with it.

We have called the API function PostQuitMessage(). This function posts a WM _QUIT message
into the message queue. As we saw earlier, when this message is picked up the message loop and
WinMain() is terminated.

OnTimer()

For drawing as well as erasing the ball we have used the same function—BitBIt(). While erasing we
have used the raster operation code WHITENESS. When we use this code the color values of the
source pixels get ignored. Thus red colored pixels of ball would get ignored leading to erasure of the
ball in the window.

The size of client area of the window can be obtained using the GetClientRect() API function. For
the smooth motion of the ball we have incremented x and y co-ordinates by 10. When the ball
touches the edges of window we have called PlaySound() function. This function plays a sound
specified by a file name, and the sound is played asynchronously, and returns immediately after
beginning the sound. To terminate an asynchronously played waveform sound, in the PlaySound()
function second parameter (pszSound) is set to NULL.

Slide Number 13

If the ball hits any side of the window, it should appear like, bouncing back. It is achieved by,
decrementing the x and y co-ordinates by 10.

Slide Number 14

As a part of exercise develop a program for a game shown in the slide. In this game we have to hit the
enemies that are dropped down by the helicopter which after every few seconds appears on the screen
at the top-right comer and moves forward towards top-left corner and then disappears once it reaches
left edge. While the enemies are coming down near the gun we have to hit them by rotating the gun
using arrow keys. If two or more enemies reaches near the gun then the enemies destroy it.

Programming Expertise In C

Linux

233

Linux

In this lecture you will understand:

What is Linux

C programming under Linux
What is Processes

Parent and Child Processes
Communication using Signals

* % ¥ ¥ W

234 Linux Programming Expertise In C

What Is It

Linux is a clone of the Unix operating system. Its kernel was written from scratch by Linus Torvalds
with assistance from a loosely-knit team of programmers across the world on Internet. It has all the
features you would expect in a modern OS. Moreover, unlike Windows or Unix, Linux is available
completely free of cost. The kernel of Linux is available in source code form. Anybody is free to
change it to suit his requirement, with a precondition that the changed kemel can be distributed only
in the source code form. Several programs, frameworks, utilities have been built around the Linux
kemel. A common user may not want the headaches of downloading the kemel, going through the
complicated compilation process, then downloading the frameworks, programs and utilities. Hence
many organizations have come forward to make this job easy. They distribute the precompiled kernel,
programs, utilities and frameworks on a common media. Moreover, they also provide installation
scripts for easy installations of the Linux OS and applications. Some of the popular distributions are
RedHat, SUSE, Caldera, Debian, Mandrake. Slackware, etc. Each of them contain the same kernel
but may contain different application programs, libraries, frameworks, installation scripts, utilities,
etc. Which one is better than the other is only a matter of taste. Linux works on literally every
conceivable microprocessor architecture.

Under Linux one is faced with simply too many choices of Linux distributions, graphical shells and
managers, editors, compilers, linkers, debuggers, etc. For simplicity we have chosen the combination
as shown in the slide.

The First Program

The program is exactly same as compared to a console program under DOS/Windows. It begins with
main() and uses printf() standard library function to produce its output. So what is the difference?
The difference is in the way programs are typed. compiled and executed. The steps for typing,
compiling and executing the program are discussed below.

The first hurdle to cross is the typing of this program. Though any editor can be used to do so, we
have preferred to use the editor called ‘KWrite’. This is because it is a very simple yet elegant editor
compared to other editors like “vi’ or ‘emacs’. Note that KWrite is a text editor and is a part of K
Desktop environment (KDE). Once KDE is started select the following command from the desktop
panel to start KWrite:

K Menu | Accessories | More Accessories | KWrite
After that, carry out the following steps.
(a) Type the program and save it under the name ‘hello.c’.
(b) At the command prompt switch to the directory containing ‘hello.c’ using the cd command.
(c) Now compile the program using the gce compiler as shown below:
gec hello.c

(d) On successful compilation gee produces a file named ‘a.out’. This file contains the machine code
of the program which can now be executed.

(e) Execute the program using following command.
Ja.out

Processes

Kernel assigns each process running in memory a unique ID to distinguish it from other running
processes. This ID is often known as processes ID or simply PID. It is very simple to print the PID of
a running process programmatically.

Programming Expertise In C Linux 235

In the first program, getpid() is a library function which returns the process ID of the calling process.
When the execution of the program comes to an end the process stands terminated. Every time we run
the program a new process is created. Hence the kernel assigns a new ID to the process each time.
This can be verified by executing the program several times—each time it would produce a different
output.

As we know, our running program is a process. From this process we can create another process. This
is done in the 2™ program. There is a parent-child relationship between the two processes. The way to
achieve this is by using a library function called fork(). This function splits the running process into
two processes, the existing one is known as parent and the new process is known as child.

Watch the output of the program in the slide. You can notice that all the statements after the fork()
are executed twice—once by the parent process and second time by the child process. In other words
fork() has managed to split our process into two.

Why fork()

At times we want our program to perform two jobs simultaneously. Since these jobs may be inter-
related we may not want to create two different programs to perform them. Suppose we want to
perform two jobs—copy contents of source file to target file and display an animated GIF file
indicating that the file copy is in progress. The GIF file should continue to play till file copy is taking
place. Once the copying is over the playing of the GIF file should be stopped. Since both these jobs
are inter-related they cannot be performed in two different programs. Also, they cannot be performed
one after another. Both jobs should be performed simultaneously. We would want to use fork() to
create a child process and then write the program in such a manner that file copy is done by the parent
and displaying of animated GIF file is done by the child process.

As we know, fork() creates a child process and duplicates the code of the parent process in the child
process. There onwards the execution of the fork() function continues in both the processes. Thus
the duplication code inside fork() is executed once, whereas the remaining code inside it is executed
in both the parent as well as the child process. Hence control would come back from fork() twice,
even though it is actually called only once. When control returns from fork() of the parent process it
returns the PID of the child process, whereas when control returns from fork() of the child process it
always returns a 0. This can be exploited by our program to segregate the code that we want to
execute in the parent process from the code that we want to execute in the child process. We have
done this in our program using an if statement. In the parent process the ‘else block’ would get
executed, whereas in the child process the “if block” would get executed.

Parent & Child

This program would use the fork() call to create a child process. In the child process we would print

the PID of child and its parent, whereas in the parent process we would print the PID of the parent
and its child.

In addition to getpid() there is another related function that we have used in this program—
getppid(). As the name suggests, this function returns the PID of the parent of the calling process.

You can tally the PIDs from the output and convince yourself that you have understood the fork()
function well. A lot of things that follow use the fork() function.

Signals

Consider the program given in the slide. Here we have used an infinite while loop to print the
message "Program Running" on the screen. When the program is running we can terminate it by
pressing the Ctrl + C. When we press Ctrl + C the keyboard device driver informs the Linux kernel
about pressing of this special key combination. The kernel reacts to this by sending a signal to our
program. Since we have done nothing to handle this signal the default signal handler gets called. In

236 Linux Programming Expertise In C

this default signal handler there is code to terminate the program. Hence on pressing Ctrl + C the
program gets terminated.

But how would the default signal handler get called? There are several signals that can be sent to a
program. A unique number is associated with each signal. To avoid remembering these numbers, they
have been defined as macros like SIGINT, SIGKILL, SIGCONT, etc. in the file ‘signal.h’. Every
process contains several ‘signal ID - function pointer’ pairs indicating for which signal which
function should be called. If we do not decide to handle a signal then against that signal ID the
address of the default signal handler function is present. It is precisely this default signal handler for
SIGINT that got called when we pressed Ctrl + C when the above program was executed. INT in
SIGINT stands for interrupt.

Customized Signal Handling

In the program given in the slide, we have registered a signal handler for the SIGINT signal by using
the signal() library function. The first parameter of this function specifies the ID of the signal that we
wish to register. The second parameter is the address of a function that should get called whenever
the signal is received by our program. This address has to be typecasted to a veid * before passing it
to the signal() function.

Now when we press Ctrl + C the registered handler, namely, sighandler() would get called. This
function would display the message ‘SIGINT received. Inside sighandler’ and return the control back
to main(). Note that unlike the default handler, our handler does not terminate the execution of our
program. So, only way to terminate it is to kill the running process from a different terminal. For this
we need to open a new instance of command prompt (terminal). Next do a ps —a to obtain the list of
processes running at all the command prompts that we have launched. Note down the process id of
a.out. Finally kill ‘a.out’ process by saying

#kill 3276
Here, 3276 happens to be a process id but it would be different number in your case.

If we wish we can abort the execution of the program in the signal handler itself by using the exit (0
) beyond the printf().

Note that signals work asynchronously. That is, when a signal is received no matter what our
program is doing, the signal handler would immediately get called. Once the execution of the signal
handler is over the execution of the program is resumed from the point where it left off when the
signal was received.

Handling Multiple Signals
Let us now try to handle multiple signals. Consider the program given in the slide.

In the program apart from SIGINT we have additionally registered two new signals, namely,
SIGTERM and SIGCONT. The signal() function is called thrice to register a different handler for
each of the three signals. After registering the signals we enter a infinite while loop to print the
‘Program running’ message on the screen.

As in the previous program, here too, when we press Ctrl + C the handler for the SIGINT i.e. f1() is
called. However, when we try to kill the program from the second terminal using the kill command
the program does not terminate. This is because when the kill command is used it sends the running
program a SIGTERM signal. The default handler for the message terminates the program. Since we
have handled this signal ourselves, the handler for SIGTERM ie. f2() gets called. As a result the
printf() statement in the f2() function gets executed and the message ‘SIGTERM Received’ gets
displayed on the screen. Once the execution of f2() function is over the program resumes its
execution and continues to print ‘Program Running’. Then how are we supposed to terminate the
program? Simple. Use the following command from another terminal:

Programming Expertise In C Linux 237

kill -SIGKILL 3276

As the command indicates, we are trying to send a SIGKILL signal to our program. A SIGKILL
signal terminates the program.

The process may catch most signals, but there are a few signals that the process cannot catch, and
they cause the process to terminate. Such signals are often known as un-catchable signals. The
SIGKILL signal is an un-catchable signal that forcibly terminates the execution of a process.

Note that even if a process attempts to handle the SIGKILL signal by registering a handler for it still
the control would always land in the default SIGKILL handler which would terminate the program.
As explained earlier the process id may be different in each case.

The SIGKILL signal is to be used as a last resort to terminate a program that gets out of control. One
such process that makes uses of this signal is a system shutdown process. It first sends a SIGTERM
signal to all processes, waits for a while, thus giving a ‘grace period’ to all the running processes.
However, after the grace period is over it forcibly terminates all the remaining processes using the
SIGKILL signal.

Common Handler

Consider the program given in the slide. Here, during each call to the signal() function we have
specified the address of a common signal handler named f(). Thus the same signal handler function
would get called when one of the three signals are received. This does not lead to a problem since in
the f() we can figure out inside the signal ID using the first parameter of the function. In our program
we have made use of the switch-case construct to print a different message for each of the three
signals.

Note that we can easily afford to mix the two methods of registering signals in a program. That is, we
can register separate signal handlers for some of the signals and a common handler for some other
signals. Registering a common handler makes sense if we want to react to different signals in exactly
the same way.

Widget Programming

Having understood the mechanism of signal processing let us now see how signaling is used by
Linux — based libraries to create event driven GUI programs. As you know, in a GUI program events
occur typically when we click on the window. type a character, close the window, repaint the
window, etc. We have chosen the GTK library version 2.0 to create the GUI applications. Here, GTK
stands for Gimp’s Tool Kit.

The GTK library provides a large number of functions that makes it very easy for us to create GUI
programs. Every window under GTK is known as a widget.

Let us now see a program to create a simple window. Consider the program given in the slide.

Here, we have Initialized the GTK library with a call to gtk init() function. This function requires
the addresses of the command line arguments received in main(). Next, we have called the
gtk window new() function to create a top level window. The only parameter this function takes is
the type of windows to be created. A top level window can be created by specifying the
GTK WINDOW TOPLEVEL value. This call creates a window in memory and returns a pointer
to the widget object. The widget object is a structure (GtkWidget) variable that stores lots of
information including the attributes of window it represents. We have collected this pointer in a
GtkWidget structure pointer called p. We have set the title for the window by making a call to
gtk window set title() function. The first parameter of this function is a pointer to the GtkWidget
structure representing the window for which the title has to be set. The second parameter is a string
describing the text to be displayed in the title of the window.

238 Linux Programming Expertise In C

Then we need to register a signal handler for the destroy signal. The destroy signal is received
whenever we try to close the window. The handler for the destroy signal should perform clean up
activities and then shutdown the application. GTK provides a ready-made function called
gtk main quit() that does this job. We only need to associate this function with the destroy signal.
This can be achieved using the g signal connect() function. The first parameter of this function is
the pointer to the widget for which destroy signal handler has to be registered. The second parameter
is a string that specifies the name of the signal. The third parameter is the address of the signal
handler routine. We have not used the fourth parameter.

To resize the window to the desired size we have called gtk widget set size request() function.
The second and the third parameters passed to this function specify the height and the width of the
window respectively. Lastly, to display the window on the screen we have called function
gtk widget show().

In order to wait in a loop to receive events for the window. we have called gtk main() function.

Slide Number 11

With this knowledge of creating windows let us now try a program that draws a few shapes in the
window. Consider the program given in the slide.

This program is similar to the first one. The only difference is that in addition to the destroy signal we
have registered a signal handler for the expose event using the g signal connect() function. This
signal is sent to our process whenever the window needs to be redrawn. By writing the code for
drawing shapes in the handler for this signal we are assured that the drawing would never vanish if
the windows is dragged outside the screen and then brought back in, or some other window uncovers
a portion of our window which was previously overlapped, and so on. This is because a
expose_event signal would be sent to our application which would immediately redraw the shapes in
our window.

The way in Windows we have a device context, under Linux we have a graphics context. In order to
draw in the window we need to obtain a graphics context for the window using the gdk gc new()
function. This function returns a pointer to the graphics context structure. This pointer must be passed
to the drawing functions like gdk draw line(). gdk draw rectangle(). gdk draw arc().
gdk draw polygon(), etc. Once we are through with drawing we should release the graphics
context using the gdk ge unref() function.

