OO®Ps &, C++

Student Reference Book

Contents

Lecture 1: Procedural Programming

e Disadvantages of Procedural Programming

¢ Need for Object-Oriented Programming

e Structure in C vs. Structures in C++

Lecture 2: Object Oriented Solutions

e Basics of Classes and Objects

e Accessing modifiers, data members and member functions
Lecture 3: Classes in CPP

e How to print data

Lecture 4: this Pointer

e The this pointer and its utility

e (Creating first console-based application in VC++ IDE
Lecture 5: Access Specifiers and Constructors

e QGuaranteed initialization with Constructors

e Constructors

Lecture 6: Function Overloading

¢ Function overloading, default arguments & operator overloading
e Overloaded constructors

Lecture 7: Calling Constructor Explicitly

e (Creating and initializing array of objects

Lecture 8: Which gets called?

e Determine which constructor gets called

¢ The overloaded assignment operator & copy constructor
Lecture 9: Operator Overloading

e What is operator overloading?

Lecture 10: Separating Things

e Nameless object

Lecture 11: More Variety

e The explicit keyword

¢ friend functions

Lecture 12: Pre, Post & References

e Overloading pre and post incrementation operators

e References

01

09

11

13

17

19

21

25

27

29

31

Lecture 13: Are References Necessary

¢ Dos and don’ts about references

Lecture 14: Dynamic Memory Allocation

e Destructors

¢ Dynamic memory allocation

e Static vs. dynamic memory allocation
Lecture 15:Nameless Objects

e malloc()/free() vs. new/delete

e Avoiding memory leaks and dangling pointers
¢ Allocating memory dynamically for an array
Lecture 16:Static Objects

e Static data members and member functions
Lecture 17: Singleton Class

e What is mean by Singleton Class

Lecture 18:Reuse

e Code reuse

e ‘Has’ a (container) or ‘Is” a (inheritance) relationships
Lecture 19:Containership and Inheritance

e Flow of construction in inheritance

Lecture 20:Object Size

¢ protected access modifier

e Private, Public & Protected Inheritance
Lecture21: Calls Differ

33

35

37

39

41

43

47

49

e Difference in calling mechanism for normal member functions and constructor functions

Lecture 22: Types of Inheritance

e The Types of inheritances—Multi-level Inheritance, Multiple Inheritance

Lecture 23: Polymorphism

¢ Polymorphism

e Compile-time & runtime polymorphism
Lecture 24: Pure Virtual Function

e Virtual functions

e Pure-virtual functions

Lecture 25: Virtual Functions and Cases
¢ VTABLE and VPTR

it

51

57

Lecture 26: Different Cases

e Study different cases of which function gets called

Lecture 27: Virtual Destructor
e Study virtual destructor
Lecture 28: File I/O Classes

e Console I/O using functions of ‘stdio.h’.

e The hierarchy of ios class

Lecture 29: Formatting Flags and Manipulators

¢ Formatting flags

e Manipulators

Lecture 30: Creating Manipulators
e User-defined manipulator
Lecture 31: Buffered and File I/O
¢ Buffered /'O

e The iostream library

e File /O with Streams

e File opening modes

e Error flags

Lecture 32: Character and Binary I/O
e Character I/O

e Binary 'O

e Position a file pointer

e Writing data to printer

e (C++ names for hardware devices
Lecture 33: Error Handling

e Exception handling

¢ Handle runtime error

e (Catch Exception

Lecture 34: Constructors in MI

e Constructors in multiple inheritance
e Virtual base classes

¢ Virtual destructors

Lecture 35: Inline Functions

e Inline Functions

e Usage of const qualifier

it

63

69

71

79

81

85

89

93

97

¢ The mutable keyword

Lecture 36: Data Conversion

e Data conversions

Lecture 37: Object Slicing

e Object slicing

¢ Run Time Type Identification (RTTI)

e The usage of reinterpret cast, const cast, static_cast, etc.

Lecture 38: Class Libraries

e Different class libraries

e STL

e Containers, Iterators and Algorithms
e (Categories of containers

Lecture 39: Stack, Queue and Vector
e Using sequence containers

e Using derived containers

e Using associative containers

e Programming vector, stack and priority queue
Lecture 40: Using List

¢ Using list

Lecture 41: Using Set Multiset

¢ Using map/multimap

e Using set/multiset

Lecture 42: MFC Collection Classes Introduction
e Limitations of array and linked list

e Various MFC collection classes
Lecture 43: First Console Application
e Returning a reference

e Overloading subscript ([]) operator
e Using CUIntArray class

Lecture 44: Linked List of Strings

e Using CStringList class

Lecture 45: Map Strings

¢ Using CMapStringToString Class

e Setting multiple values with a key in a map

Al

101

105

109

113

117

119

123

125

129

131

OOPS and C++ Procedural Programming

1

Procedural Programming

In this lecture you will understand:

* Disadvantages of Procedural Programming
The need for Object-Oriented Programming
* How structure in C++ differ from that in C

2 Procedural Programming OOPS and C++

Agenda

In this course our aim is to learn Object-Oriented language called C++. We shall learn the various
concepts of Object-Oriented language. In order to learn C++, one should be familiar with C
programming. By saying ‘familiar with C programming’ it is expected that one should have thorough
knowledge of important elements of C language like arrays, strings, pointers and structures. Here we
would not be dealing with all these features. (You can refer Appendix at the end of this book to brush
up some of the basics of C programming). While starting with C++ we would like to have a gradual
transition from the C language. Hence we would start with the discussion on structures.

Structures

To begin with let us discuss how structures are created and used in a C program. Consider following
example:

struct emp

charn[20];inta;floats ;
¥

Here, emp is the structure name and n, a and s are the structure elements (members). A structure is a
user-defined data type, which is used whenever we wish to deal with a collection of dissimilar data
types or whenever we need to create our own type having dissimilar elements. A structure is a
blueprint or a design or a template by which we just tell the compiler what members the structure
variable would have when it would be created. A structure declaration never occupies memory, rather
memory gets allocated for the variables of the structures. For example,

struct emp e1 ={"Anil", 23,5000 } ;
struct emp €2 ={"Amol", 24, 6000} ;

Here, el and e2 are two variables of type emp. each of which holds different set of data. A variable
of a structure is also called an instance of a structure. Structure members are always stored in
contiguous memory locations and they can be accessed using the structure operators . and “->" as
shown below:

struct emp *p ;

p=2&e2 ;

printf ("%s %d %f", e1.n,el.a,els) ;
printf ("%s %d %f",p->n,p->a,p->s) ;

)

To access structure members using a variable of that structure, operator is used. However, to
access structure members using a pointer to the structure variable, ‘->’ operator is used. The value of
one structure variable can be assigned to another using the assignment operator.

To understand the basics of object-oriented programming and why it came into being, we need to
discuss the problems with the procedural approach towards programming. To make a comparison we
would take an example of how stack data structure can be implemented with procedural and object-
oriented programming approaches.

Stack

OOPS and C++ Procedural Programming 3

Earliest programs used to be merely a collection of data and statements that processed this data. In this
approach, if one job to be performed several times we were simply required to rewrite the same code
those many times at the places where we wanted to get it repeated. This obviously was not the best way of
going about it. So there was a shift to another style of programming called Procedure-oriented
programming whose cornerstone was functional abstraction.

Let us consider the working of a stack. In stack, addition of new element or deletion of an existing
element always takes place at the same end. This end is known as top of the stack. This is similar to how
plates are organized in a cafeteria where every new plate is added to the top. Similarly, every new plate is
taken off from the top. Adding a new item to the stack is known as push and removing the top-most
element is known as pop.

Let us now see how stack can be implemented with procedural programming approach.

Procedural Programming

Let us develop a program to maintain stack of integers. Had this problem been solved using old style of
programming, to pop 2 to 3 elements from a stack same set of statements would have been required
causing repetition of code. This repetition of code would have led to long programs that were difficult to
comprehend. Hence people abandoned this style of programming and separated program into two entities
called data and functions.

Functions/subroutines/procedures were introduced in procedural languages (like C, Pascal, etc.) to make
the programs more comprehensive to their human creators. A program could now be divided into
functions, with each function having a clearly defined purpose and a clearly defined interface to the other
functions in the program. It used confrol instructions like sequence, decision, repetition or case. Local
variables came into existence with procedural programming.

A local variable is said to born when it is declared in a function, lives its life till the control is in the
function and dies the moment control goes out of the function in which it is declared. A new concept came
into existence with procedural programming—Abstraction. Abstraction permitted the programmer to
look at something without being concemed with its internal details. In a procedural programming it is
enough to know which task is performed by function. It does not matter to the programmer how that task
is performed so long as the function does it reliably. This is called functional abstraction and is the
corner stone of procedural programming. However, even this approach has many limitations.

The first and foremost is that no importance is given to data. The whole emphasis is on doing things that
is on functions/routines/procedures. Functions do things just as single program statements do. What they
do may be more complex, but the emphasis is still on doing things. Data is given step-motherly treatment
even though it is the reason for program's existence. For example, in a payroll processing application the
important part is not only the functions, which display the data and checks for correct input, but also the
payroll data, which is important.

Another limitation of procedural programming is that its primary components—functions and data
structures—don’t model the real world very well. For example, suppose you are writing a program to
create the elements of a GUI such as menus, windows, etc., there are no obvious program elements to
which a menu or a window would correspond.

Thirdly, procedural programming languages permit us to create structures and functions that can be used
at several places in the program, leading to reuse. However, the reuse is limited only this. Object-oriented
programming takes this reuse a step further through concept called Inheritance and Templates. We would
be covering these two topics later.

Since the procedural approach is a poor representation of the real world we need to first understand the
real-world model well.

Real-World Model

4 Procedural Programming OOPS and C++

If you look around you would find that the world is full of objects. Thus a car is an object. A window
that you get on the screen is also an object. Each object may contain several smaller objects as listed
in the slide. Let’s now see what is common amongst all objects.

Object Contents

Each object, say, a car contains several attributes like oil temperature, oil viscosity, revolution per
minute etc. and functions that would access/modify these attributes. Similarly, a toolbar would have
several attributes that can be accessed/modified using different functions present in it. Thus any
object in real-world would contain attributes (data) and functions that would access/modify this data.

More Objects

This slide shows a few more examples of objects. The stack object would contain data (array and
top) and functions like push() and pop() for addition and removal of elements from the stack
respectively.

Similarly, there can be a DateTime object having data members date, month, year, hours, minutes
and seconds. The functions like getdate(). gettime(), etc. can then be used to get information about
the date, current time, etc.

Note that in this type of program design importance is given to both a function that works on data and
the data for which the functions are written. Without data, functions are meaningless and without
functions, data has no meaning.

If we look at the procedural solution for such a design we would be able to appreciate the limitation
of procedural programming.

OOPS and C++ Object Oriented Solution

3

Object Oriented Solution

In this lecture you will understand:

* Basics of Classes and Objects
Access modifiers, data members and member functions

6 Object Oriented Solution OOPS and C++

Procedural Solution

Let us see a procedural solution for maintaining a stack. Consider the program given in the slide, that
maintains a stack (under heading ‘stack.c’).

Here we have kept the stack data and functions that operate on this data separate from the program
that uses the stack. In the program we have directly accessed the array a and data member top. If this
can be done then what is the use of functions. If the data can be processed without calling a function
why write a function at all. This is a limitation of a procedure-oriented programming, as data is given
less importance. Stress is given more on procedures that work on data.

As against this, let us see the object-oriented solution.

OO Solution

Consider the program given in the slide, that gives Object-Oriented solution.

Here, the data and functions are enclosed within the structure. Moreover, some access modifiers are
given indicating how the end-user will have access to them. The access modifier private protects
data/functions from outside world. They can be accessed within the structure but not outside the
structure. The access modifier public makes available both data/functions to the outside world. This
is what is the fundamental change in OOP—a program is designed around the data being operated
upon rather than upon the operations themselves.

Some interesting facts...

(a) Programming languages like C++, Java, SmallTalk, etc. are all object-oriented programming
languages.

(b) C++ was developed by Bjarne Stroustrup in 1980 at AT & T Bell Labs. His picture (bottom) is
shown in the slide along with that of Dennis Ritchie (top).

Difference

C++ extends the reach of structures by allowing the inclusion of functions within structures. The
functions defined within a structure have a special relationship with the structure data members.
Placing data and functions (that work upon the data) together into a single entity is the central idea in
object-oriented programming and is known as Encapsulation.

There is another entity in C++ called class that too can hold data and functions. There is only one
difference between a structure and a class—structure members are by default public, whereas, class
members are by default private. Hence at least in principle they can be used interchangeably. But
most C++ programmers use structures to exclusively hold dissimilar data and classes to hold both
data and functions.

Classes are generic, whereas objects are specific. Thus stack can be a class whereas s1 and s2 can be
objects of that class. This means that each object can hold specific values in it that may be different
than the values stored in another object.

Classes In C++

To begin with let us see a program that demonstrates the syntax and general features of classes in
C++. Consider program given in the slide.

Here the class a contains an int and a float as two data items. An object is an instance of a class, and
the process of creating an object is called instantiation. In our program we have defined two objects
z1 and z2 which are instances of the class a. The objects z1 and z2 are often known as instance
variables. Remember that the specification of the class does not create any objects. It only describes

OOPS and C++ Object Oriented Solution 7

how the objects will look like when they are created. It is the definition that actually creates objects,
which can then be used by the program. Thus, defining an object is similar to defining a variable of
any data type—space is set-aside for it in memory. Note that it is not necessary to use the keyword
class while defining an object.

In simplest terms a class is like a data type, whereas, an object is like a variable of that data type. Like
a structure, the body of a class is delimited by braces and terminated by a semicolon.

Like structure members, class members can also be accessed using the’.” (dot) or an ‘->" operator.

Note that we have used cout (console output) to display the values on the screen. Whenever we use
cout it is necessary to include ‘iostream.h’ at the beginning of the program. The operator << is called
an insertion operator since using it we insert values in the output stream that goes to the console. In C
<< was a bitwise left-shift operator. In C++ too this operator exists but in addition to the bit
operations the << operator can also be used to send output to the console. This facility of using the
same operator for performing different operations is called Operator Overloading.

cout is better than printf() on two counts:
(a) We are not required to remember and use the format specifiers “%od’, ‘%f”, etc.

(b) We can output the contents the entire object z by simply saying cout << z. For this to work we
would have to understand an implement a concept called operator overloading, which we are
going to cover later.

Since class members are by default private they cannot be accessed from outside the class. Hence the
program shown in the slide would not work. Let us now see what we need to do to make it work.

Making It Work

In the previous program our aim was to create an object z1 of class a and initialize its data members i
and j with data 10 and 3.14 respectively. Then using cout we wished to print the data on screen. If we
try to execute this program it would generate errors. This is because we are trying to initialize the
data members i & j outside the class. This is not possible, because the default access modifier for a
class is private, which means that the data members cannot be accessed outside the class. A solution
to this is to make access modifier for data as public. However, this is not a good solution, as it does
not protect data. A better solution to this is shown in the next slide.

Running C++ Programs

This slide shows the steps that you should carry out to create and execute the C++ programs using the
Visual C++ 6.0 compiler.

Once the program is typed and saved you can compile and execute the same using either Ctrl + F5 or
by clicking the ! button present in one of the toolbars in the VC++ ID.

OOPS and C++ Classes in C++ 9

Classes in C++

In this lecture you will understand:
(k) How to print data

10 Classes in C++ OOPS and C++

Still Better Way...

Observe carefully the program given in the slide.

Here, the body of the class contains two keywords—private and public. They are used in C++ to
implement a concept called data hiding. It means that data is concealed within a class so that it cannot be
accessed by functions outside the class even by mistake. The mechanism used to hide data is to putitina
class and make it private. The private data and functions can be accessed from within the class. The
public data and functions on the other hand, are accessible from outside the class. In the class given in the
slide, the data items i and j follow the keyword private, so they can be accessed from within the class, but
not from outside it.

A function declared within a class is called a ‘member function” or ‘method’. These two terms are
interchangeable. Member function is a C++ term, whereas, method is a general object-oriented
programming term. The member functions provide controlled access to the data members of class.

Usually the data within a class is private and the functions are public. The data is kept hidden from
external use so that it remains safe from accidental manipulation, while the functions that operate on the
data are public so they can be accessed from outside the class. However, there is no rule that data must be
private and functions public. In fact in some cases you may be required to use private functions and
public data.

Now, consider following statement,
el.setdata (10, 3.14);

Why is the object name el connected to the function using a *.”? This syntax is used to call a member
function that is associated with the specific object. Since setdata() is a member function of the class a, it
must always be called in connection with an object of this class. It won’t make much sense if we say,

setdata (10,3.14) ;

This is because a member function is always called to act on a specific object, not on the class in general.
Not only does this statement not make much sense, but the compiler would also flash an error message if
you use it. Moral is, member functions of a class can be accessed only by an object of that class.

To use a member function, the dot operator connects the object name and the member function. The
syntax is similar to the way we refer structure elements, but the parentheses signal that we are accessing a
member function rather than a data item. The dot operator is also called ‘class member access operator’.

Which Is Better

Suppose some value in the data member of a class has to be stored. but the condition is that the value
should be greater than 0. A solution to this can be as shown in the slide.

In the program (the first program from left side of the slide), before assigning the value we are checking
whether it is greater than 0 and if so then only we are assigning it to the data member of class sample.
This code suffers from two problems. First, we have to keep the age data member as public so that after
checking the entered value we can directly assign it to the data member. Secondly, every time we wish to
set the value in age, we need to check the value before assigning it. A better solution would be as the
second program (to the right-side) as shown in the slide.

Here, the data member age is kept private to the class. We have added a function called setdata() to set
value in age. This function checks the value before assigning it. This is a better solution because not only
is age protected from accidental use, there is no need fo check for its validity again and again.

Printing The Data

What if private data has to be printed? Add a member function called printdata() to the class and
call it from main(). This is shown in the program given in the slide.

OOPS and C++ this Pointer il

this Pointer

In this lecture you will understand:

* The this pointer and its utility
* How a console-based application is created in VC++IDE

12 this Pointer OOPS and C++

How Many Copies

Now a question arises as to how many copies of data members and member function would get
created if multiple objects were created? It is obvious that each object would have its copy of data
members since values of data members in each object are likely to be different. Each object would
occupy different locations in memory. Size of any object is the sum of sizes of data members present
in the class (except static data members, which would be discussed later).

But what about member functions? The member functions are loaded only once in memory and are
shared amongst objects. This makes sense, as member functions do not maintain state on behalf of
objects. As against this, data members maintain state on behalf of objects. Thus, though an object is a
collection of data and functions, this definition of the object is only conceptually true. In practice all
objects share a common set of member functions.

How come member function would know on which object it has to work with. This is explained in
the next slide.

The this Pointer

Any member function can be called only through an object of that class. When a member functions is
called using an object the address of the object is implicitly passed to the member function. The
member function collects this address in a pointer named this. When we compile a class, the compiler
attaches this > before each and every data member used in the member function. Since all data
members are prefixed with this >, (where this contains the address of the object) the data member of
an appropriate object gets accessed. For example, in the slide this -> i would refer to el’sior e2’s i
depending upon using which object (el or e2) is the setdata() function called.

Is this Necessary
The program given in the slide illustrates use of this pointer.

In this program the setdata() function contains i and a as its parameters. The purpose of setdata() is
to set the value in the object’s data members, whose names are i and a too. But when we compile the
class, the compiler uses those i and a, which are most local. Since i and a defined as parameters are
most local, they are used and compiler doesn’t prefix this > before any i and a. Hence data members
of an object are not assigned any value.

To tell the compiler to use the data member i and a we need to explicitly attach this -> before them as
shown in the slide.

OOPS and C++ Access Specifier And Constructor 13

Access Specifier And
(Constructor

In this lecture you will understand:

* How guaranteed initialization is possible with constructors

14 Access Specifier And Constrictor OOPS and C++

Recap

In the last lecture we had our first tryst with classes in C++. Just to reiterate, a class is a collection of
data and functions that operate upon this data. Both data and functions can be private or public,
which essentially decide the access to the data and functions within the class.

To develop a new application we need to create a new project. A question arises as to why should we
create a project? A project can consist of group of related files that are required to develop an
application. When a project is compiled all these files get compiled at one shot. This avoids the need
of compiling each file independently and then linking them together. Till now the project that we
built contained only one file. But as we go along we would be required to build multiple files holding
different classes that would be required to build a single application.

When we create and execute a “Win32 Console application’, it directs the output on a console
window i.e. DOS window. Hence we use cout (console out) to print the output.

Hiding vs Security

Protecting or hiding data from external usage is popularly known as data hiding. Don’t confuse data
hiding with the security techniques used to protect computer data. Security techniques prevent illegal
users from accessing data. Data hiding, on the other hand, is used to protect data from accidental
usage through honest mistakes. If we are bent upon then we can access even private data from
outside the class as shown in the program given in the slide.

Here, s is an object of class sample and p is an int pointer. We have stored the address of s in pointer
p by typecasting it to int*. This makes p point to s. Now if we try to access the value at the address
stored in p, first four bytes of s would be accessed, which is the value of data member i. And if we try
to store some value, let’s say 10, value of i would get overwritten by 10. Thus if we are bent upon,
using pointers we can access even private data from outside the class.

Cvs C++

Let us take the example of stack and see how it can be implemented in C and C++. First let us try to
implement the stack in C. Observe carefully the two programs given in the slide. The first program
(to the right of slide) implements stack in C whereas the second program (to the left of slide)
implements the stack in C++ using a class.

Since in a class all members (data and functions) are private by default we may as well drop the
keyword private. In the interest of clarity we recommend you to use the keyword private explicitly.

In the C++ class there is one member function which has the same name as the class. Such a function
is called constructor. This function automatically gets called when we create an object of the stack
class.

Though both programs would be able to maintain the stack the C++ code is superior for following
Teasons:

(a) In the C program we are required to call init() function to specifically initialize top to 0. If we
forget to call init() then top would have a garbage value. This might prove disastrous. As
against this, the constructor offers guaranteed initialization of top as it always gets called when
we create a stack object

(b) There is no need to pass the address of the object explicitly to the member functions. The address
automatically gets passed when we call the member function using an object.

Thus using encapsulation (keeping data and functions grouped together in a class) has obvious
advantages over the keeping the data and functions separate from one another (as done in C).

OOPS and C++ Access Specifier And Constructor 13

Constructors

In Lecture 1 we had used the setdata() function to initialize the data members of the object. We were
required to call setdata() explicitly using the object of the class. Forgetting to call setdata() would
leave the object un-initialized and hence prone to bugs. To ensure guaranteed initialization of an
object’s data members C++ provides a feature called constructor.

The constructor is a special member function that has a same name as that of the class and which gets
called automatically when an object is created. Moreover, the constructor is never required to return
any value, hence its return type is implicitly veid. The following program given in the slide shows the
constructor at work:

In C++, object creation is a two-step process:
(a) Memory is allocated for the object
(b) Constructor is called to initialize the data members of the object.

In the program given in the slide, we have created two objects. When we create el the two-argument
constructor gets called, and when we create e2 the zero-argument constructor gets called. In previous
programs we had not created zero-argument constructor in the class. But still we could successfully
create the objects from the class. This is because C++ compiler provides an empty zero-argument
constructor if we don’t provide one.

However, if a class contains constructors other than a zero-argument constructor and if we try to
build a zero-argument object thinking that the compiler anyway provides one, an error would occur.
This is because compiler doesn’t provide a zero-argument constructor if it finds any other constructor
inside the class.

Note that the class created above contains two constructors having same names but different number
of arguments. Such constructors are known as overloaded comnstructor functions. Function
overloading permits us to have multiple functions with same name.

OOPS and C++ Function Overloading 17

Function Overloading

In this lecture you will understand:

* The advantages of function overloading, default arguments & operator overloading
* How overloaded constructors simplify code

18 Function Overloading OOPS and C++

Function Overloading

In C, every function in a program has to have a unique name. At times this becomes annoying. For
example, in C there are several functions that return the absolute value of a numeric argument. Since
a unique name is required, there is a separate function for each numeric data type. Thus, there are
three different functions that return the absolute value of an argument:

int abs (int i);
long labs (long 1) ;
double fabs (double d);

All these functions do the same thing, so it seems unnecessary to have three different function names.
C++ overcomes this situation by allowing the programmer to create three different functions with the
same name. This is called function overloading. The program given in the slide illustrates this.

How does a C++ compiler know which set() function to be called? It decides that from the type of
the arguments being passed to the function.

However, if you execute this program it would generate an error. Why? The reason is that the last two
definitions of set() function receive the same type of argument but differ only in the value that they
return. Moral is that the overloaded functions must at least differ in the type, number or order of
parameters they accept. Don’t rely on the return values to differentiate them.

Why C++ compiler cannot differentiate on the basis of return types? Consider the previous example.
Can we decide by seeing the last two calls which function definition should get called? The answer
would obviously be no, because both the last two definitions qualify for this call. This becomes an
ambiguous situation for the C++ compiler. Hence it flashes an error.

Two In One

C++ also allows its programmer to specify default arguments for the function parameters. This
simplifies calling functions having large number of parameters. Consider the program given in the
slide.

Here, the two-argument constructor has default values for its parameters. Given below are a few
examples indicating which constructor would get called while creating the object:

exel(10,3.14); [/l calls 2-arg. cons.

exe2; Il calls 2-arg. cons. & Initializes both data members with default values
exe3(19); I/ calls 2-arg cons. & Initializes i with 15 and j with 0
exed=10; /] calls 2-arg cons. & Initializes i with 10 and j with 0

However, the following statement would generate an error.
exed=2,11;

We cannot create and initialize objects in this manner.

OOPS and C++ Calling Constructor Explicitly 19

Calling Constructor Explicitly

In this lecture you will understand:

* How to initialize array of objects by calling constructors explicitly

20 Calling Constructor Explicitly OOPS and C++

Calling Constructor Explicitly

Till now we saw that constructors are called implicitly to make guaranteed initialization of objects.
There are situations when we are required to call even constructors explicitly. Consider the second
statement given in main() of the program given in the slide.

This statement initializes an object el. To initialize the object we have called the two-argument
constructor. Since constructor is used merely to initialize the allocated object’s data, calling the
constructor directly without allocating memory for the object would lead to an error. Hence when the
C++ compiler finds that constructor is being called explicitly it first makes provision to allocate space
for the object. As we have not specified any name to the objects, they are known as nameless objects.

Note that once nameless objects’ values are assigned to object to be initialized with, they became
useless in the program. If they don’t die, unnecessarily they would keep occupying the memory.
Hence C++ compiler ensures that nameless objects die after they are assigned to the object.

Pointer To An Object

What if we want to change the value of a local object from another function? Like primitive variables
we can pass the address of the local object to another function, collect the address in a pointer of the
same type and change the value of the object. This is shown in the program given in the slide.

Here, the two-argument constructor gets called to initialize object e. Next, we have called set()
function to set new values for the data members of e. One more way is given in the slide to set new
values. We have called function fun(). To this function we have passed address of e (i.e. this
pointer). Then in fun() using pointer p (which contains address of e) we have called set() function to
set new values.

OOPS and C++ Which Gets Called 21

Which Gets Called

In this lecture you will understand:

* Determine which constructor gets called
* The overloaded assignment operator & copy counstructor

22 Which Gets Called OOPS and C++

Readymades

The C++ compiler provides a zero-argument constructor by default. However, if we provide either the
zero-argument constructor or multiple-argument constructor then the compiler would not provide the
Zero-argument Constructor.

However, the C++ compiler provides copy constructor even if some other constructor is available. The
default copy constructor is not provided if we defined one explicitly. The compiler also provides a default
overloaded assignment operator. We can override the default one if we want.

Which Gets Called

This slide shows which functions in the class are called while creating, assigning, passing and returning
objects. Let us analyze the program statement by statement.

(a) The following statements call two-argument constructor which is also a default-argument
constructor:

ex e1(1,25);
exe;

(b) The following statement calls overloaded assignment operator function of the class. Since we have
not provided it, it would be added to our class by the C+ compiler.

e2=el;
The overloaded assignment operator gets called when data of members of an existing object of one
type is to be copied to members of other exiting object of the same type.

(¢) The following statement calls a copy constructor (special type of constructor that is used to initialize
the object with the object of same type).

ex e2=el;

Unlike zero-argument constructor, which is provided only when no other type of constructor is
present, C++ compiler always provides a copy constructor. The copy constructor gets called when
data of members of an existing object of one type is to be copied to members of the new object of the
same type. Thus, here e2 is a new object, which gets created first and then, gets initialized with data
members of el.

(d) In the following code snippet, the copy constructor is called when the set() function gets called. This
is because when set() is called, object x is created and initialized with the same type of object.

e2set(el);

void set(ex x)

{
}

(e) In the following code snippet the two-argument constructor with default arguments would get called
when we call set():

e2set(1);

void set(ex x)

{

OOPS and C++ Which Gets Called 23

®

}

On calling set(). x object would be created and x would be initialized to 1. It would be like ex x (1
). which invokes two-argument constructor with default arguments provided in the class.

In the following code snippet when the fun() function would return, the object returned by it would
get collected in a nameless object. Since nameless object would get created first and then it would get
initialized, a copy constructor would get called. Next the contents of nameless object would get
copied member-by-member to existing object €2, through an overloaded assignment operator.

e2 =fun();

ex fun()

{
ex t;
return t;

}

OOPS and C++ Operator Overloading 25

Operator Overloading

In this lecture you will understand:

* 'What is operator overloading

26 Operator Overloading OOPS and C++

Operator Overloading

C++ provides a facility called operator overloading that makes the operations on objects intuitive.
Suppose we wish to store the result of concatenation of two strings, s1 and s2, into s3. Instead of
using strcat() for concatenation and strepy() for copying, the statement s3 = s1 + s2 would be more
intuitive. The program given in the slide uses the concept of operator overloading to perform addition
of two objects.

Here, the statement ¢ = a + b, can be interpreted as ¢ = a.operator + (b). Here a call to operator + (
) function is being made using the object a, whereas, object b is being passed to it. We can even
cascade operators, for example, a +b +c+d ora + b * ¢/ d, etc. is permissible. The priorities of
operators remain same as that for primitive data types and cannot be changed through operator
overloading.

The result of the operation a + b gets collected in a nameless object, which is then assigned to c.

Tips About Overloading

If you want to extend the reach of C++ operators you can always do so using operator overloading.
However, there are some limitations too. We cannot overload operators like . , :: , ? and : , because
they work on names and not on operands (values).

OOPS and C++ Separating Thing 27

Separating Things

In this lecture you will understand:

* What is nameless object

28 Separating Things OOPS and C++

Separating Things...

In real-life programming using C++, the definition of class member functions is kept separate than
the declaration of the class. This slide contains the declaration of class comp. The declaration is kept
in “h’ file.

Slide Number 04

This slide contains the definition of class comp. The class definition is kept in “.cpp’ file. The class
information is provided to “.cpp’ file by #including ‘comp.h’ file.

Note that the default values if any are to be given in a function, then they must be specified in “.h’
file, where function declaration is given. These values should not be specified in function definition.

Slide Number 05

This slide contains the program that uses class comp. We have #included ‘comp.h’ but not
‘comp.cpp’. The ‘comp.cpp’ contains class implementation, which should be protected from the end-
user. The “.cpp’ file should never be #included. When the definition (i.e. “.cpp’) is compiled it
generates the object code. This object form and the “h’ file is then given to the other programmer.
This doesn’t expose the code written by the creator of the class. The programmer who wants to use
such a class has to include the “.h’ file and link the object file to his program.

OOPS and C++ More Variety 29

More Variety

In this lecture you will understand:

Need of friend function
How to write and use a friend function

30 More Variety OOPS and C++

More Variety

Now we know what sort of flexibility is provided by the C++ language when compared with C in
terms of functions and user-defined data types. Let us now discuss more on operator overloading and
some issues related with it. Till now we have used the overloaded operator +() function to add same
type of objects. What if we add a user-defined object with a primitive type? Consider the program
given in the slide.

Here, ¢ = a + d, would be expanded to ¢ = a.operator + (d), d would be collected in ¢2, which
would become comp ¢2 (d). This becomes a call to one-argument constructor. Since comp class
contains a two-argument constructor with default parameters, this constructor would get called and c2
would get initialized. The overloaded operator +() function would then work without any problem.
The conversion from double to comp that happened here is called implicit conversion. We can
prevent such implicit conversions by specifying explicit keyword before the constructor. If we still
want a + d to work we need to write it this way, a + comp (d). Here comp (d) is an explicit call to
the consfructor.

Also, ¢ = d + a, would be expanded to ¢ = d.operator + (a). This time operator + () function of
comp class would not get called. Instead operator + () of double class would get called. Since
double class has no overloaded operator + () function that can collect a comp object, the call would
result into an error. To make such arithmetic statements work, the user-defined class whose object is
taking part in computation should provide a friend function as shown in the next slide.

Making It Work

To make d + a work, we need to provide a global eperator + () function as shown in the slide.

When compiler sees a global overloaded operator + () function it converts the call to operator + (
d, a). Here both operands are being passed to function. The value of d would get converted to comp
using one-argument constructor and value of a would get copied with the help of copy constructor.
But if we try to access private data members of ¢1 and ¢2 objects to actually perform the addition, it
would result in an error. This is because the global function is not a member of the class. To allow the
global function access private data members of the class, the class creator needs to declare the global
function as friend in the class. Thus a friend function is actually a global function with rights to
access private data members of the class in which it is declared.

Now, all the three statements involving addition operation would work. However, if we use explicit
keyword with the constructor, then the last two statements, ¢ =a + d ; and ¢ = d + a ; would not
work. In order to make it work we would require to add two more friend functions, one that works on
a double and object of comp, and the other that works on object of comp and double.

OOPS and C++ Pre, Post and References 31

Pre, Post and References

In this lecture you will understand:

* Overloading of pre and post incrementation operators
* Need of references

32 Pre, Post and References OOPS and C++

Pre & Post

Pre and Post increment and decrement operators are unary operators. This means they operate only on
one operand. For example, in +H, i is the only operand. Also, ++, would get expanded to
i.operator++(). Here no value is passed to operator++() function. The program given in the slide
demonstrates unary operator at work.

Here we have two overloaded operator ++ functions. One is index operator ++() and the other is
index operator ++ (int). The first one is used for prefix notation, whereas, the second one is used
for postfix notations. The only difference is the int in the parentheses. This imt isn’t really an
argument. It’s simply a signal to the compiler to call the postfix version of the overloaded operator.
On similar lines we can implement the pre and post decrement operators as well.

References

Suppose we have a structure containing numerous elements. If we are to pass a variable of this
structure to a function then the function will have to collect it in another structure variable. This
would lead to unnecessary duplication of data as well as overheads in terms of time required to pass a
big structure. This difficulty can be eliminated in C by passing address of the structure variable. C++
provides a more elegant solution by providing a reference. A reference is a const pointer, which gets
de-referenced automatically. Let us understand this with the help of examples given in the slide.

Here, j is a reference of i, whereas i is a referent. When we write j = 20, j gets de-referenced
automatically and becomes *j. Hence 20 gets assigned to *j. Since j holds the address of i, value
stored in i gets overwritten with 20.

Reference is more elegant than pointer in the way that we do not have to de-reference it explicitly
using *, as well as, -> while accessing structure members. Also, we do not have to store the address
of the variable in it by specifying &. The address of the variable gets stored automatically. For
example, the statement int &p =i, is expanded to int * const p = &i, automatically.

But once a reference (which is a const pointer) is tied with a variable, it cannot be tied in any way
with another variable. As against this, a pointer has flexibility that it can store address of one variable
at one time and later on store address of another variable.

Subtleties

A few points to note...

(a) A reference must always be initialized. Thus the following set of statements produce an error.
inti=10;
int & ; // error
=15

(b) A variable can have multiple references. Changing the value of one of them effects a change in
all others.

(¢) Though an array of pointers is acceptable, an array of references is not.

OOPS and C++ Are References Necessary 33

Are References Necessary

In this lecture you will understand:

Dos and don’ts about references

34 Are References Necessary OOPS and C++

Different Calls

What is the advantage of referencing? Referencing goes a long way in removing untidiness in code,
making it more readable, as the program given in the slide would justify.

Here, the call to fun1() is a normal call where we have passed the variable d, which gets collected in
X. Changing the value of x in this function. has no effect on the value d. The fun2() function
demonstrates a call by address. In this function using pointers we could change the values of d in the
calling function. The fun3() achieves the same effect more elegantly by using the reference. While
calling the function that accepts a reference. we do not need to pass the address explicitly by
specifying &d. The address of the variable is automatically passed.

Are References Necessary

Consider the code snippet given in the slide.

Here, whenever the function operator +() gets called a new object ¢2 gets created. We can avoid the
creation of new copy by defining ¢2 as a reference. Here if we define ¢2 as pointer then the user of
class would be required to write ¢ = a + &b. This expression would work but is not a good idea since
it gives a feeling that a is being added to the address of b.

OOPS and C++ Dynamic Memory Allocation 35

Dynamic Memory Allocation

In this lecture you will understand:

How to achieve guaranteed cleanup of objects using destructors
Dynamic Memory Allocation

How memory is allocated on stack and heap

The differences between static and dynamic memory allocation

* # O * ¥

36 Dynamic Memory Allocation OOPS and C++

Dynamic Memory Allocation

While doing dynamic memory allocation in C the memory is allocated from heap. Thus heap is a
pool of memory from which standard library C functions like malloc() and calloc() allocate
memory. The memory allocated from system heap using malloc(), calloc() and realloc() is vacated
(deallocated) using the function free().

C++ offers a better way to accomplish the same job through the use of the new and delete operators.
The new operator allocates memory from free store (in the C++ lexicon, heap is called free store),
whereas, the delete operator returns the allocated memory back to the free store. Thus the new and
delete operators perform the job of malloc() and free().

Instead of using the new operator to allocate memory had we used malloc() the allocation statements
would have looked like this:

i = (int*) malloc (sizeof (int));
a=(float*) malloc (sizeof (float)) ;
e=(emp ™) malloc (sizeof (emp)) ;

Note that since malloc() returns a void pointer it is necessary to typecast it into an appropriate type
depending on the type of pointer we have on the left hand side of the assignment operator. This gets
completely avoided when we are using the new operator as shown below:

pl=newint;
p2 = new employee ;

Static V/s Dynamic Allocation

The variables defined in a program gets allocated on stack, whereas, dynamically created variables
are allocated on heap. Allocations in stack are in adjacent locations. Same may not be true in case of
a heap.

Allocation
Consider the code snippet given the slide.

On compilation of a program, a compiler creates a symbol table. In this symbol table it stores
information like name of the variable, its scope, and size of the variable. It also stores the offset from
data segment for global variables and from stack segment for local variables. Then it stores the
instruction for local variables and the statement that cause a call to malloc() function. Finally after
creation of OBJ code (Object code) compiler discards the symbol table. The OBIJ code of our
program is then linked with the OBJ code of library (if there is any call to a library function in our
program). Finally, an EXE file gets generated. This EXE file contains some header information,
which is used by the loader program (one which loads an EXE into memory).

If there were lots of global variables used in a program, then the loader would fail in loading in the
variables. This is because after loading an EXE file into memory first job is to load all global
variables. And if enough memory is not available then at this stage loader will fail. Secondly, if too
many local variables were present in our program then it would cause stack overflow. Similarly, if
too much of dynamic memory were required to be allocated, then it would cause heap overflow.

OOPS and C++ Nameless Objects 37

Nameless Objects

In this lecture you will understand:

Difference between new and malloc()

Difference between delete and free()

How to avoid memory leaks and dangling pointers and make your program robust
Allocating memory dynamically for an array

* # O * ¥

38 Nameless Objects OOPS and C++

Named & Nameless Objects

Look at the code snippet given in the slide.

Here, the first statement creates an object p of class shape. The second statement declares a pointer to
an object of class shape. The third statement, creates an object of class shape dynamically and stores
its address in q. Actually, new allocates memory for a nameless object and the address of this
nameless object gets stored in the pointer q.

Are new & malloc() Same

No! new not only allocates space, it also calls the constructor. Similarly, delete before freeing the
space calls the destructor (function that gets called automatically just before the object is destroyed).
In contrast, malloc() & free() merely allocate and de-allocate memory. The program given in the
slide, justifies this.

Avoid Memory Leaks - 1

Consider the program given in the slide.

Here, we have called function f(), which creates object e of class ex. The constructor allocates
memory for an int and float and stores the addresses in p and q respectively. The object e dies when
control returns to main() from function f(). As a result, the destructor gets called. However, the
memory that we have allocated for p and q still remains allocated causing a memory leak. To avoid
this memory leak we must de-allocate memory using delete operator in the destructor as shown in the
slide.

Array Allocation

Let us now see how memory is allocated dynamically, for an array: Consider the code given in the
slide.

Here, we have allocated memory dynamically for an array of 10 integers and have made pointer p to
point to this array. Then we have accessed the array and store some values in it.

Avoid Memory Leaks - I1

One more situation is there which can cause memory-leak. Consider the code snippet given in the
slide.

Here, too we have called function f() through main(). In this function, z is a pointer, which points to
an array of objects of type ex. The statement, delete z, should de-allocate memory pointed to by z.
Yes it de-allocates the memory pointed by z, but does not call destructor for all the objects in an
array. Hence the memory allocated in the constructor does not get cleaned up. To make delete call
destructors for all objects we need to use the form delete[] z.

OOPS and C++ Static Objects 39

Static Objects

In this lecture you will understand:

Role of static data members and member functions of a class

40 Static Objects OOPS and C++

Static

We know that each object contains its own separate data members. whereas, the member functions
are shared amongst all objects. However, there is an exception to this rule. If a data member of a class
is declared as static, then only one such item is created for the entire class, itrespective of the number
of objects created from that class. We can have a static member function as well.

A static data member is useful when all objects of the same class must share a common item of
information. A static data member is available only within the class, but it continues to live ftill the
time program execution doesn’t come to an end. In that sense a static data member is similar to the
ordinary static variable. However, their utility is different. While a normal static variable is used to
retain information across function calls, static data members of a class are used to share information
among the objects of a class. For example, if we develop a calendar class that displays a calendar
with Month name, days and dates. If we want to display multiple calendars at a time and allow users
to manipulate them, we would be required to create multiple objects. But each would share month
names and day names since they would be common for all calendars.

Likewise we can even count number of objects created from the class. The program given in the slide
shows how to do so.

The class sample has two data members, i, which is a normal int, and count, which is of type static
int. The constructor for this class causes count to be incremented. In main() we have defined two
objects of class sample. Each time an object is created the constructor gets called. Hence, i would be
initialized to 0 and count would get incremented. We have created a function objects() of type
static to display the current value of count. Note the way this function has been called. We can
call this function in two ways as shown below:

sample s1;
s1.objects() ;
sample::objects() ;

The first way is a little clumsy. We shouldn’t need to refer to a specific object when we’re accessing
something, which is not at all part of the object. The second way is more elegant. It’s more
reasonable to use the name of the class itself with the scope resolution operator. Also note that it is
necessary to initialize the static variable and that too outside the class.

Difference
Observe carefully the table given in the slide.

The static functions cannot access non-static data members or call non-static member functions
because static functions are never called through objects and hence object’s address is never passed
to them. If non-static data members and member functions were referred from within static functions,
the compiler would fail to resolve the statements, as it would never come to know which object’s data
members to access and on which object’s data the member functions are going to work.

Like static member functions, friend functions too are not called through objects. Unlike static
functions, friend functions are always out of the class scope.

OOPS and C++ Singleton Class 41

Singleton Class

In this lecture you will understand:

* What is mean by Singleton class

42 Singleton Class OOPS and C++

Problem

Static data and functions can be used to create a class of which only one object can be created. Such a
class is known as singleton class. This is a frequent requirement in an Object-Oriented program.
Such a common requirement is often called a Design Pattern.

Singleton Class

The slide shows a class sample containing a private zero-argument constructor and a public static
function, create(). When the create() function is called it first checks whether any object of type
sample has been created or not. If p contains NULL it means no object has been created. In such a
case it creates an object of the sample class dynamically, stores the address in p and returns p. If an
object of class sample already exists then a new object is not created. Instead the address of the
existing object is returned.

The client application cannot create the object of the sample class directly because, the zero-
argument constructor is private and no other constructor is available. The client has no other choice
but to create the object by calling the static function create().

OOPS and C++ Reiuise 43

Reuse

In this lecture you will understand:

* Ways to reuse the existing code
* When to use “Has’ a (container) or ‘Is’ a (inheritance) relationships

44 Reise OOPS and C++

What Next

The slide shows the different features of a C++ class that we have done so far.

Reuse

Reusability of the code is a main feature of OOPs. Reuse of code can be divided into two
categories—Source-code level reuse and Object-code level reuse. Source-code level reuse is achieved
through templates. Templates are used for generating functions and classes based on type of
parameters supplied. By using templates we can design a single class or function that operates on data
of many types, instead of having to create separate classes and functions for each type.

Object-code level reusability involves containership and inheritance. For example, a MFC (Microsoft
Foundation Class Library) class CString is used to work on strings of variable lengths. But if list of
strings is to be maintained then a class called CStringList is used. CStringList class holds objects of
CString class. Thus, CStringList is a container holding CString objects.

Inheritance allows one class to reuse the state and behavior of another. For example, a MFC class
CButton inherits properties and functionalities of CWnd class, thereby reusing the CWnd class. The
class that inherits the properties and method implementations of another class can extend the methods
and properties it has inherited by overriding methods and providing additional properties and
methods.

Thus, when B class is derived from A class we say that B is like A. In other words, B has ‘Like a’
relationship with A. In case of containership it is said that the class has ‘Has a’ relationship with
another class.

Relationships

Let us now examine some relationships that exist in real world. In real world too we have same sort
of relationships like containership and inheritance. For example, car and scooter are vehicles. This
means that car and scooter inherits properties and functionalities of a vehicle. This is an inheritance
relationship. As against this, a car and a scooter contain an engine. So the relationship between the
car and engine or scooter and engine is that of containership.

Similarly, the UI (User-Interface) elements in Windows depict such relationships. For example,
toolbar, status bar, button, edit control, combo box and list box are windows (i.e inheritance),
whereas, toolbar contains buttons, combo box contains edit box and list box (i.e. containership).

OOPS and C++ Containtership and Inheritance 45

Containership and Inheritance

In this lecture you will understand:

* How to write highly reusable classes with the help of different types of inheritance
* Why construction of an object of derived class always proceeds from base class to derived class

46 Containership and Inheritance OOPS and C++

Containership
Consider the code snippets given in the slide.

Here, string is a class that contains a character array str used to store a string. The print() function
prints the string. This class can have functions to cairy out conversion operations like lower to upper
or upper to lower, and other operations like concatenation, comparison, etc. What if we wish to
maintain a collection of string objects and perform operations on them like printing all strings, adding
a new string, deleting a string, refrieving a string, etc. The solution is to create a container class
stringlist as shown in the slide.

The stringlist class contains an array of objects of string. The add() function adds an object of string
to the array s| |. Similarly, printall() function can be used to print the strings in s[].

Inheritance

Inheritance is the process of creating a new class, called derived class from an existing class. The
existing class is called a base class. The derived class inherits all the capabilities of the base class
but can add new features and refinements of its own. By adding this refinement the base class
remains unchanged. Inheritance not only promotes reuse of existing code but also helps in the
original conceptualization and design of the program. We can derive a new class from an existing
class even if we do not have the source code of it. Let us now see inheritance at work:

Consider the program given in the slide. Here index is the base class and index1 is the derived class.
The base class serves the purpose of a general-purpose counter. However, it can only increment the
counter and not decrement it. We would not add the decrement facility in the index class for two
reasons:

(a) We may not have access to source code of index.

(b) If index class is a thoroughly tested class, inserting new code in it may demand additional
testing.

Instead we would prefer to derive index1 from index and add the decrement facility to it. The class
index1 doesn’t need the operator ++ () function, since it is already present in the base class. When
Wwe create an object i or when we increment i the functions in the base class get called. Note that for
the data member count to be available in the derived class it must be declared protected in the base
class. A protected member can be accessed in the derived class but not from outside the class. Thus,
we have increased the functionality of the index class without modifying it.

A few important tips are in order...
(a) A derived class function can call a base class function through a statement like,
base:function() ;

(a) A base class function can never call a derived class function except the function is defined
virtual in the base class. Virtual functions would be covered in next lecture.

OOPS and C++ Object Size 47

Object Size

In this lecture you will understand:

* How to access base class data members in derived class using protected access modifier
Private, Public & Protected Inheritance

48 Object Size OOPS and C++

Object Sizes

Consider the code given in the slide.

Here, class b contains 3 ints i, j and k as data members. The class d is derived from class b and
contains its own data members X, y and z all ints. Now, if we create an object of derived class d then
the size of the object would be the total size of the data member of its own class as well as those that
are inherited from the base class. All data members of the base class are inherited irrespective of
access modifiers. Hence, the size of an object of class d, would be 24.

Access

Considering the same example discussed in earlier slide, let us see how class d can access members
of class b. Class d has access to all the protected as well as public members of class d. We can
access the public members of class b from outside the class. Similarly, we can access only public
members of class d from outside the class.

Which Gets Called

Consider the program given in the slide.

Here, after creating an object z of class b the first statement would print Hello by calling function f1(
) inherited by derived class b from class a. The second statement would print Hi by calling function
£2() of derived class b. The third statement would print GM by calling £3() function of derived class
b. The fourth statement would print two strings in the order ByeAdieu. This is because in the f4()
function of derived class b we have firstly called function f2() of base class a. In the last statement
we have explicitly called the function f2() of class a through the statement z.a::f2(), hence the
output would be Bye.

This program demonstrates that while inheriting a class we can:
(a) Use the existing functionality of the base class.
(b) Extend the existing functionality by providing new functions in the derived class.

(c) Override the existing functionality of the base class by providing new functions in the derived
class bearing the same name as those in the base class.

(d) Combine the existing functionality of the base class with the new functionality provided in the
derived class.

OOPS and C++ Calls Differ 49

Calls Differ

In this lecture you will understand:

* Difference in calling mechanism for normal member functions and constructor functions

50 Calls Differ OOPS and C++

Calls Differ

This slide shows the difference in calling mechanism for normal member functions and constructor
functions.

When a derived class object calls a function, the compiler first checks for the function in the derived
class. If it finds the function, it links the call to the definition of the function. If the compiler doesn’t
find the function in the derived class then it searches for the function in the base class. If function is
found then it is linked, otherwise it is searched in super base class. If function is still not found or
super base class doesn’t exist then an error occurs.

When an object of a derived class is created, the compiler searches for a proper constructor in the
derived class. If proper constructor is not available the compiler straightaway flashes an error. If a
proper constructor is found, then the compiler searches for a zero-argument constructor in the base
classes (irrespective of how many argument object is created). If zero-argument constructor is not
found in any of the base classes an error occurs. But if zero-argument constructor is found, the
constructor of the top-most base class is called followed by the constructor of the derived class. Thus,
the order of calls to constructors is always from base class to derived class.

Slide Number 04

Suppose during the construction of a derived class object if we wish to call a one-argument
constructor of the base class. For this we need to explicitly call the one-argument constructor of the
base class, as shown below:

classb
{
public :
b(int k):a(k) /ais the base class containing one-argument constructor
: cout <<"b's constructor " ;
}
}

Here, we are directing the compiler to call one-argument constructor of the base class.

Why Base To Derived (B To D)

As we saw in the last slide the order of construction should be from base towards derived. Let us now
try to understand the reason for this. This order is important because of two reasons:

(1) We may want to overwrite the values of data members of the base class in the derived class.
(2) We may want to use the base class data members in the derived class constructor.

The program given in the slide demonstrates this.

OOPS and C++ Types of Inheritance 51

Types of Inheritance

In this lecture you will understand:

* The Types of inheritances—Multi-level Inheritance, Multiple Inheritance

52 Types of Inheritance OOPS and C++

Types Of Inheritance - I

The derived class creator can inherit base class publicly, protectedly or privately. This leads to three
types of inheritance:

Public Inheritance—So far we have used only this type of inheritance. In this type of inheritance the
public and protected members of the base class remain public and protected members for the
derived class.

Protected Inheritance - When a class is inherited protectedly all public members of it become
protected in the derived class. Hence, the derived class object would not be able to access the public
members of the base class from outside the derived class. But the public as well as protected data
members of the base class would be accessible from within the derived class.

Private Inheritance - When a class is inherited privately all public and protected members of it
become private in the derived class. Hence, the derived class object would not be able to access the
public and protected members of the base class from outside the derived class.

If a class d is derived privately from class b then protected and public members of class b become
private in class d. Hence an object of class d object will not be able to access the public members of
class b from outside the class d. Moreover, if a class ¢ is derived from class d then from class ¢ we
will not be able to access the public as well as protected members of the class b, even if we inherit
class ¢ publicly.

Types Of Inheritance — II
There are two more types of inheritance relationships:

If there are multiple classes in an inheritance chain then it is know as multiple-level of inheritance.
For example, class b is derived from class a and class c is derived from class b.

If we derive a class from more than one class then it is known as multiple-inheritance.

If we derive a class b from class a, then we can further derive class ¢ from class b, class d from class
c and so on. This is known as multiple levels of inheritance.

A class ¢ can be derived from two independent classes called class a and class b. This is known as
multiple inheritance.

Suppose class b is derived from class a and class ¢ is derived from class b. If we create an object of
class ¢ the constructors would be called in the order a, b, ¢. This means construction proceeds from
base class towards derived class. The destruction proceeds from derived class towards base class.

OOPS and C++ Polymorphism 53

Polymorphism

In this lecture you will understand:

* What is Polymorphism
* Need of polymorphism
* The difference between compile-time & runtime polymorphism

54 Polymorphism OOPS and C++

Problem

Consider a problem where we want to draw circles and rectangles on the screen. After the screen is
erased, we would like to repaint or redraw all the shapes drawn before. For this we would have to
create two arrays, one for circle and another for rectangle. Each array would then store the
coordinates & color of the respective shapes that are drawn on the screen. Not only this, it would be
necessary to store the order in which the shapes were created. If we the order is not used, then, a
circle that was drawn later may overlap a rectangle drawn earlier. To avoid this we would have to
maintain one more array in which we would store say ‘R’ for rectangle and ‘C’ for circle for
example, in the order in which they were drawn. This solution is not elegant because we need to
maintain a separate array for each shape. If anytime a new shape is added, a new array needs to be
created to store the information. Moreover, array if allocated statically imposes limitation of being
non-resizable.

Solutions

The solution could be to create a linked list of veid pointers. When a new shape is drawn an object of
it would be created dynamically and its address would be stored in the array of void pointers. Here
we would need only one array to store both circle as well as rectangle object pointers. But once we
store the address of any object its type would be lost and while retrieving the address it would be
difficult to know which object’s address is stored where. Hence again we would be needed to
maintain one more linked list that would store the indicator like ‘R’ and ‘C’, which would help us in
knowing whose address is stored in which location. Thus this solution has an overhead of an extra
linked list that stores ‘R’ and “C’.

Is there any solution whereby we are now required to maintain multiple arrays and that the type
information remains intact? We need to create a class called shape and derive the classes—circle and
rectangle from it. Then we need to create a linked list of shape pointers and store in it the addresses
of circle and rectangle objects. This process of storing address of derived class object in pointer to
base class object is called upcasting. But by doing this the type information is again lost. That’s
when a feature called Runtime Polymorphism can be used to access the correct type information and
work with different circle and rectangle objects. The philosophy and working of this concept is
discussed in next few slides.

Polymorphism

The meaning of the word polymorphism is one thing existing in several different forms. Such type of
polymorphism we had seen in the form of function and operator overloading. There is one more type
of polymorphism. In this type on performing the same action a different activity takes place. In
practice we notice many cases of this type of polymorphism. For example, using mouse if we click on
a menu then a menu pops-up, whereas, if we click on close button the window closes. This means the
action that we take (left clicking the mouse) is same but its effect is different. Similarly while driving
a car on carrying out the same action of shifting gears the car moves either in forward or in reverse
direction.

In C++ polymorphism can either be Compile-time polymorphism or Runtime polymorphism. The
compile-time polymorphism is implemented through function and operator overloading, whereas,
runtime polymorphism is implemented using virtual functions.

Slide Number 6

In this lecture we would try to understand what’s the need of runtime polymorphism. Then we would
discuss how virtual function mechanism works.

Consider the program given in the slide.

OOPS and C++ Polymorphism 39

Here circle and rectangle are classes derived from the base class shape. Each of these three classes
has a member function draw(). In main(). having created the objects ¢, r of circle and rectangle
respectively and a pointer p to base class, we have assigned the address of a derived class object to
the base class pointer through the statement,

p=é&c;

Should this not give us an error, since we are assigning an address of one type to a pointer of another?
No, since in this case the compiler relaxes the type checking. The rule is that pointers to objects of a
derived class are type-compatible with pointers to objects of the base class. Taking the address of a
derived class object and storing it as the address of the base class object is called upcasting.

‘When we execute the statement,
p->draw();

which function gets called—draw() of circle or draw() of shape? The function in the base class
gets called. This is because the compiler ignores the contents of the pointer p and chooses the
member function that matches the type of the pointer. Here, since p’s type matches the base class, the
draw() of base class gets called. Same thing happens when we call draw() for the second time.

Sometimes this is what we want, but it doesn’t provide the facility of accessing functions of different
classes using the same statement. Let’s make a small change in our program. Let’s precede the
declaration of the function draw() in the base class with the C++ keyword virtual.

If we execute the program now the output would be:

circle
rectangle

As can be seen from the output, this time instead of the base class, the member functions of the
derived classes are executed. Thus the same function call,

p->draw() ;

executes different functions, depending on the contents of p. The rule here is that the compiler selects
the function to be called based on the contents of the pointer p, and not on the type of the pointer.
Problem is how does the compiler know which function to link, when it doesn’t know which object's
address p may contain at runtime. It could be the address of an object of the circle class or of the
rectangle class. Which version of draw() does the compiler call?

In fact the compiler doesn’t know what to do, so it arranges for the decision to be deferred until the
program is running. At runtime, when it is known what object is pointed to by p. the appropriate
version of draw() gets called. This is called late binding or dynamic binding. (Choosing functions
in the normal way, during compilation, is called early, or static binding.) Late binding requires some
overhead but provides increased flexibility.

Instead of pointers had we used references the effect would have been same.

OOPS and C++ Pure Virtual Functions

37

Pure Virtual Functions

In this lecture you will understand:

* How to achieve runtime polymorphism using virtual functions
* Advantage of pure-virtual functions over virtual functions

38 Pure Virtual Functions OOPS and C++

Pure Virtual Functions

We can add another refinement to the virtual function declared in the base class of the last program.
Since the function draw() in the base class never gets executed we can easily do away with the body
of this virtual function and add a notation =0 in the function declaration, as shown in the slide.

The draw() function is now known as a pure virtual function. Thus, a pure virtual function is a
virtual function with no body and a = 0 in its declaration. The = sign here has got nothing to do with
assignment; the value O is not assigned to anything. It is used to simply tell the compiler that a
function will be pure virtual function, i.e. it will not have any body.

If we can remove the body of the virtual function can we not remove the function altogether. That
would be too ambitious and moreover it doesn’t work. Without a function draw() in the base class,
statements like

p-> draw() ;
would be invalid.

Since draw() of the base class was never getting called we made it a pure virtual function. There is
another side to it. At times we may want that a user should never be able to create an object of the
base class. Consider the same example, if there is base class called shape from which three classes
line, circle and rectangle have been derived. We would never make an object of the shape class; we
would only make objects of the derived classes to draw specific shapes. A class from which we
would never want to create objects is called an abstract class. Such a class exists only as a parent for
the derived classes. Now how do we communicate to users who are going to use our classes that they
should never create an object of the base class? One way is to document this fact and rely on the users
to remember it. That’s a sloppy way. Instead, a better way would be to write the base class such that
any object creation from it becomes impossible. This can be achieved by placing at least one pure
virtual function in the base class. Now anybody who tries to create an object from such a base class
would be reported an error by the compiler. Not only will the compiler complain that you are trying
to create an object of the abstract class, it will also tell you the name of the virtual function that
makes the base class an abstract class.

Whenever a pure virtual function is placed in the base class, we must override it in all the derived
classes from which we wish to create objects. If we don’t do this in a derived class then the derived
class becomes an abstract class.

Consider the program given in the slide.

Here, shape is an abstract class containing draw() as a pure virtual function. The class circle and
rectangle have been derived from shape class. In main() we have created few objects of circle and
rectangle. Then we have initialized an array of pointers to shape with the addresses of derived class
objects. Then through a loop we have called draw() function through p. At runtime depending on the
contents (i.e. address of a derived class) stored in p[] the draw() function would get called. Thus
the way we call draw() remains same, but either circle’s draw() or rectangle’s draw() would get
called. Thus the interface is same but the implementation of it is different in different classes.

Summary

This slide summarizes all that we learnt so far in this lecture.

OOPS and C++ Virtual Functions & Cases j9

Virtual Functions I Cases

In this lecture you will understand:
* How virtual function mechanism is achieved using VTABLE and VPTR

60 Virtual Functions & Cases OOPS and C++

Surprised?
Go through the code snippet given in the slide.

When the first program is executed the output would be 1 1. As there are no data members in ex the
C++ compiler forces the object el and e2 to be of nonzero size (in our case 1 byte) because each
object must have a distinct address. If you imagine indexing into an array of zero-sized objects, you’ll
be able to appreciate why the size has to be nonzero. Nonzero is fine, but why 1? This is because the
smallest nonzero positive integer is 1.

Now, modify the class ex as shown in the second program given in the slide.

Here, we expect the same output. However, the output in this case would be 4 4. Surprised? The
reason is simple. The size of the object el is the size of a pointer. The compiler inserts this pointer
(called VPTR) if you have one or more virtual functions in the class.

Slide Number 4

Having established the fact that the compiler silently adds a pointer to an object of a class which
contains virtual functions let us see what this pointer points to and when is it set up. Consider the
program given in the slide.

Here, shape is a base class containing two virtual functions. Class circle is derived from shape in
which we have overridden both the virtual functions of base class. In main() we have declared a
pointer p and an object q of the base class shape and an object ¢ of derived class circle. Then, first in
p we have stored address of q and called draw2() function. This would call draw2() function of
shape, as p contains address of object of shape class. Next, in p we have stored address of ¢ and
again called draw2(). This time it would call draw2() function of circle class. This is what is late
binding. Let us discuss how this is achieved.

To accomplish late binding, the compiler creates a table called VTABLE (stands for virtual table) for
each class that contains virtual functions. In this table, the compiler places addresses of all virtual
functions in the order in which they are defined in the class. If the class is a derived class, then the
compiler first places addresses of virtual functions defined in the base class and then adds the address
of virtual functions defined in the derived class. If the derived class has redefined or overridden
virtual functions of the base class then the compiler would override the addresses of the base class
virtual functions with the derived class virtual functions in the VTABLE. Thus each class has its own
VTABLE.

When objects of a class are created, each object in its first four bytes contains the address of the
class’s VTABLE. Suppose the address of the object is assigned to the pointer of the base class. Then
using the pointer a function is called. When compiler sees such a call, it checks the type (class) of
pointer and then checks whether the function exists in that class or not. If the function doesn’t exist,
the function is searched in the base class. If the compiler doesn’t find such a function in the base class
then an error is reported. But, if the function is found, then the compiler checks whether the function
is defined as virtual or not. If the function is not defined as virtual then the compiler would directly
link the call with the function definition. This linking/binding is known as early binding and at
compile time it gets decided as to which function is going to get called when the program is executed.

Now if the function is defined as virtual, the compiler doesn’t link it with any definition. Instead, it
simply resolves it to VPTR + offset, where offset is the VTABLE's slot number that contains address
of the function being called.

Now consider the statements

p=8&q;
p->draw2() ;

OOPS and C++ Virtual Functions & Cases 61

The call to draw2() has already been resolved into Address of VTABLE (VPTR) + 1, since address
of draw2() is in slot number 1 of the VTABLE. When this code is executed address of object q is
found in the pointer. From the first four bytes of the object the value of VPTR would be extracted.
Since this value would be address of VIABLE of shape class draw2() of shape class would get
called.

Let us now consider the statements

p=é&c;
p->draw2() ;

This call to draw2() has already been resolved into Address of VTABLE (VPTR) + 1. When this
code is executed address of object ¢ is found in the pointer. From the first four bytes of the object the
value of VPTR would be extracted. Since this value would be address of VTABLE of circle class,
draw2() of circle class would get called.

Show Me The Cases

Let us now discuss the cases where it cannot be decided at compile time as to which function should
get called.

Consider the program given in the slide that comes under Case 1.

Here, if user enters value of a as 1 then we have passed address of q, an object of base class shape.
As a result, draw2() function of base class would get called. However, if the value entered for a is
not 1 then we have passed address of derived class object to fun(). This would cause draw2()
function of derived class to be called. Since at different times different class’s draw2() are getting
called the compiler cannot decide whether it should bind the call to draw2() of shape class or
draw2() of circle class. Hence it does late binding for this call.

Consider the program given in the slide that comes under Case II.

Here addresses of objects of base class and derived class are stored in an array of pointers to base
class. In the for loop we have called fun() function and passed to it the address stored in p[]. In each
iteration of for loop the function fun() would get called, and based on the contents (i.e. address of
object) stored in p, the draw2() function of base or of derived class would get called.

OOPS and C++ Different Cases 63

Different Cases

In this lecture you will understand:
* Study different Cases of which Function Gets called

64 Different Cases OOPS and C++

Casel

In the next few slides we would put the virtual function mechanism through a lot of hoops to test your
understanding of the mechanism. Consider following program (which is also given in the slide).

class base
{
public :
void h() {}

virtual void f() { }
virtual void g() { }

¥
class der1 : public base
{
public:
void h() {}
virtual void f() { }
¥
class der2 : public der1
{
public :
virtual void x() { }
virtual void g() {}
virtual void f() { }
¥
void main()
{
baseb ;
bh();
bf();
b.g();
}

Here, in main() we have created an object b of the base class and called the functions through this
object. As a result, the functions of base class get called. All functions whether they are defined as
virtual or not get early bound because they are being called using an object. In other words, late
binding comes into play when a virtual function is called through a pointer.

Considering same class declarations, observe second case of the program.

void main()
{
dert d1;
dih();
dif();
dig();

OOPS and C++ Different Cases 65

Here, in main() we have created d1 an object of derived class derl. Then we have called functions
h(). f() and g() through this object. The functions h() and f() of class derl get called. Since derl
has not overridden function g() the function of base class base gets called.

Now, consider one more case.

void main()
{
der2d2;
d2.h();
d21();
d2.g();
d2.x();
}

Here, in main() we have created d2 an object of derived class der2. Then we have called functions
h(). f() and g() and x() through this object. The function h() of der1 class gets called as der2 has
inherited it from derl. However, since der2 has overridden functions f() and g() and added x() as
its own virtual function, the overridden versions of function f() and g() would get called and x() of
der2 would get called.

What is important in each of the three cases discussed above is that the type of object through which
the function has to be called is known at compile time. Hence the compiler can early bind all the calls
made in this slide.

Case 11

To understand the discussion that follows please take a look at the virtual tables shown in the slide.
Once you know how they are created it would be much easier to follow the discussion.

Looking at the class declarations done in this slide let us discuss some cases.

void main()

{
base *b ;
der1d1;
b=_8&d1;
b->h() ;
b->1();
b->g();

Here, in main() we have declared a pointer to base class and created an object d1 of class derl. Then
in b we have stored address of d1. Thus b is an upcasted pointer. Next, through this upcasted pointer
we have called functions h(). f() and g(). Since h() is a non-virtual function, the base class version
gets called. Next, we have called f(), which is a virtual function and is overridden in derived class
der1 hence the derl version of the function gets called. But, since derl has not overridden virtual
function g(), the base class version of g() gets called as its address would be found in the VTABLE.

Consider one more variation of this program.

void main()

{

base *b ;

66 Different Cases OOPS and C++

der2 d2;
b=8&d2;
b->h() ;
b->1();
b->g();
b->x();

Here the first three calls are similar to the previous case. Let us consider the call to x(). This code
would generate an error. Here, through an upcasted pointer we have called the function x(). To
decide how to link this call the compiler checks the function’s existence in the class base. Since x()
function is not present in the class base, the compiler would try to search it in the base class of base,
which does not exist. Hence the error.

Case 111

Let us discuss some more cases related to virtual functions. Consider following program:

void main()

{
derl *d ;
der2d2;
d=8&d2;
d->h() ;
d->f();
d->g();
d->x();

This code too would generate an error. I et us see how?

Here, first we have declared a pointer d to the base class derl and created an object d2 of class der2.
Thus, d is an upcasted pointer. Then through this upcasted pointer we have called functions h(), (),
g() and x() respectively. The function h() is a non-virtual function hence h() of der1 should get
called. Next, f() and g() are virtual functions overridden in derived class der2, so functions of der2
should get called. Then comes a call to x() function, which does not belong to base class derl so we
cannot call it using a base class pointer. Hence, an error would get generated.

Case IV

Considering same declarations of base and derl class as in the previous slide. But, this time class
der1 has not been derived from base class. Both are independent classes. Let us discuss one more
case.

void main()

{
base b ;
der1 d1;
b=(base*)&d1;
b->h() ;
b->f();
b->g();

OOPS and C++ Different Cases 67

Here even though derl is not derived from base, we have stored the address of d1 object in the
pointer b by forcibly typecasting address of d1 to base *. The compiler early binds call to the h(),
since it is not defined as virtual. But when the compiler finds that f() and g() are defined virtual in
base, it late binds these calls.

At runtime, address of d1 is found in the pointer b. Hence d1’s first four bytes are accessed, which
contain address of the derl’s VITABLE. The derl’s VTABLE contains address of the virtual
function f() defined in derl. (See the declaration of classes in Case I). Since f() in base is first in the
order, it would have offset 0. Hence, 0 would have been added by the compiler to the VPTR that
would be found at execution time. The VPTR that has been found here is of derl’s VTABLE.
Adding 0 this extracts address of derl’s f(). Hence the call materializes to derl’s f().

But for g() the offset 4 would have been added by the compiler. When this offset is added to derl’s
VPTR, a garbage value is extracted and hence exception (runtime error) occurs.

If we want that the compiler should point out such errors perform the typecasting using static cast as
shown in the slide.

Output?
Consider the program given in the slide, where virtual function play a major role:

‘When the compiler compiles the program it attaches this -> before call to f1() in the function f2().
The f1() function being virtual and is being called through a pointer (this) it would be late bound.
Similarly, the statement b > f1() in main() would also be late bound. But b -> £2() would be early
bound since £2() is non-virtual.

When this program is executed the call to b —> f1() would end up calling the der::f1() since b
contains address of d. The call to b > £2() would end up calling the base::f2(). The this pointer in
the £2() function would now contain address of the object d. Hence the call to this -> f1() would
also end up calling the der::f1().

There are three uses of late binding:
(a) Runtime polymorphism
(b) Calling derived class functions from base class

(c) Keeping the interface (abstract class) separate than implementation (class that implements
abstract class).

OOPS and C++ Different Cases 69

Virtual Destructor

In this lecture you will understand:
* What is virtual destructor

70 Different Cases OOPS and C++

Slide Number 1

This slide shows how the data members would be visible in case of inheritance. Here, base is a class
that contains private, protected and public data members. If derived] class is derived publicly from
base class then protected members would remain protected and public members would be public
for the derived class. Moreover, only the public members of base class would be accessible through
an object of derived] class.

Similarly, if class derived2 is derived privately from base then protected members of base class
would remain protected for derived2 but public members would become private. Moreover no
members of the base class would be accessible through an object of derived?2 class.

Virtual Destructors
Consider program given in the slide.

Here shape class contains a pointer to an int as its data member. The memory for this member is
allocated in the constructor and deallocated in the destructor. Furthermore, circle is a class derived
from shape class. The data member p of shape class is used both in the constructor as well as
destructor of circle class.

In main() we have created s as a pointer to shape class and ¢ as a pointer to circle class. We have
allocated memory for circle class dynamically and then store it in s, an upcasted pointer. At the end
we have called delete to de-allocate memory pointed to by s. Syntactically, the program is correct,
however, the statement delete s ; would simply call the destructor of shape class, though s is
containing address of object of circle class. This is dangerous. To avoid this we need to write the base
class destructor as a virtual. On doing so, in case of example given in the slide, delete s; would now
call circle class destructor and then it would call shape class destructor.

OOPS and C++ I/0O File Class 74|

I/0 File Class

In this lecture you will understand:

* Console I/O using functions of ‘stdio.h’.
Limitations of functions of ‘stdio.h’
* The hierarchy of ios class

72 1I/0 File Class OOPS and C++

Input File Class

There are several assorted functions in C for carrying out I/O. Instead of using the assorted functions
we can encapsulate these I/O functions in different classes. This would make it easier, safer and more
efficient to perform input/output.

Consider the program given in the slide. Here, we have declared a class ifile. The class has a data
member fp of type FILE *. In the one argument constructor we have opened the file sent by the user.
We have collected the return value of fopen() in fp. Since we are going to read from this file we
have opened the file in rb (read binary) mode. We have provided a member function read() through
which we can read the file. The user has to pass the buffer and size of buffer to the read() function.
Lastly, we have defined a member function close() to close the file.

We must #include “stdio.h’ file, which is required for the I/O functions.

Output File Class

Consider the class definition of ofile given in the slide.

In this class, again we have declared fp as private data member of type FILE *. In the constructor
we have opened the specified file in the wb mode. Next, we have defined write() function so that the
user would be able to write data into the file. Again to the write() function user has to pass the buffer
containing the contents to be written in the file and its size. In the member function close() we have
closed the file.

Using File Classes

Let us now use the file classes ifile and ofile that we developed in the last two slides, in a program.
We have declared a structure emp. We have created two objects el and e2 of this structure in
main(). Next, we have created an object of the ofile class. While creating the object we have passed
name of the file, which we want to open. Once the file gets opened we have called the write()
function. We have passed to it the address of an object which is of type emp and size of the emp
structure. We have then closed the file by calling the close() function of ofile class.

To read the file we have created an object of the ifile class and called the read() function. To the
read() function we have passed the pointer to an object of type emp. The structure elements would
get filled with the contents read from the file. We have then closed the file and printed the values read
from the file.

Limitations

The way we wrote ifile and ofile classes for file I/O we can write similar classes for console I/O and
for reading/writing to a block of memory. However, there is a catch here. All these classes would use
printf() and scanf() functions. This leads to some limitations:

(a) Remembering all the format specifiers in printf()/scanf() is not an easy job.

(b) printf()/scanf() do not carry out conversions logically. For example, 3.5 print using %d neither
produces 3 nor 4.

(¢) In case of a mismatch between the specifier and the type to be printed/scanned the
printf()/scanf() functions do not report any warning.

(d) We cannot extend printf() to accommodate new data types. Thus the primary goal of C++ — the
ability to add new data types with ease -- gets defeated.

OOPS and C++ I/0O File Class 73

(e) printf()/scanf() are variable-argument list functions. An interpreter is loaded for such functions
at runtime. This increases overheads because if we print only a character still logic that prints out
long, double, etc. gets printed. This leads to wastage of memory space.

Hierarchy

C++ offers a fresh approach for performing I/O. This approach is easy (no remembering of format
specifiers), clean (no clutter in the program), safe (no unexpected manipulations of class elements),
efficient (no overheads for doing small jobs) and adaptable (accommodate new datatypes easily).
This approach uses a library called iostream library. This slide shows the organization of iostream
library.

Since in this lecture we are going to discuss Console I/O, the slide shows only the Console /O
classes and objects.

As seen in the slide ios class is at the root of the iostream class library. This class includes features
like flags for formatting the string data, the error status flags and the file operation mode.

The ios class has a pointer to the streambuf class as a data member. The streambuf class manages
the buffer into which the data is read or written. It also contains functions to handle the buffered data.

Two classes istream and ostream are derived from the ios class. They are used for input and output
respectively. istream class provides overloaded >> operator function that reads data from input
stream. ostream class provides overloaded << operator that writes data to the output stream.

A class called istream withassign is derived from the istream class. ostream withassign class is
derived from ostream class. We have been using cin and cout. They actually are stream objects. cin
and cout are the objects of the istream withassign and ostream withassign classes respectively.
That is why cin and cout objects are used for input and output respectively.

Stream is a general name given to the flow of data. Different streams are used to represent different
kinds of data. For example, the standard output stream flows to the screen display, the standard input
stream flows from the keyboard.

OOPS and C++ Formating Flags & Manipulators 7]

Formatting Flags &
Manipulators

In this lecture you will understand:

What are formatting flags

How to use formatting flags in a program
What are manipulators

How to use manipulators in a program

* ¥ ¥ ¥

76 Formating Falgs & Manipulators OOPS and C++

Formatting Flags

The ios class contains formatting flags that help users to format the stream data. Formatting flags are
a set of enum definitions. There are two types of formatting flags:

(1) Ow/Off flags
(2) Flags that work in group

The On/Off flags are turned on using the setf() function and are turned off using the unsetf()
function. To set the on/off flags the one argument setf() function is used. The flags working in
groups are set through the two-argument setf() function .

Using Formatting Flags

Let us discuss a program that shows how to use both types of formatting flags. Consider the program
given in the slide.

Here, firstly, we have called the one-argument setf() function with flags ios::showbase and
ios::uppercase. These flags are ORed and passed to the setf() function. If we display an octal or
hexadecimal values the ios::showbase flag shows 0 before the octal value and 0x before the
hexadecimal value. The ios::uppercase flag ensures that the characters in octal or hexadecimal
values appear in upper case. We have declared two integer variables and stored 32767 and 2000
respectively in them. We intend to print these values in hexadecimal form. For this, we have set the
ios::hex flag by calling two-argument setf() function as shown in the slide.

There is a flag for each numbering system (base) like decimal, octal and hexadecimal. Collectively,
these flags are referred to as basefield and are specified by ios::basefield flag. If we set the hex flag
as setf (ios::hex) then we will set the hex bit but we won't clear the dec bit resulting in undefined
behavior. The solution is to call setf() as setf (ios::hex, ios::basefield). This call first clears all the
bits and then sets the hex bit.

Next, we have displayed values of'i and j. Since we have set the hex flag, values would get printed in
hexadecimal. Again, since we have set the showbase and uppercase flags the output will be:

Ox7FFF

0x7D0

If we had not set these flags the output would have been:
ghiid

7d0

We have then reset the dec flag by calling the two-argument setf() function and printed i again. This
time 32767 gets printed in decimal. To unset the showbase and uppercase flags we have called the
unsetf() function. The unsetf() function takes only one argument.

If we want that a string should get displayed in 40 columns we should specify the number of columns
using a member function width() of ios class. When we print the string using cout you will see the
right justified string printed in the output window. If we want to left justify the string we can set the
left flag using setf(). This is shown in the next slide.

Slide Number 5

To left justify the string we have called setf() function with left flag. ios::adjustfield is a collective
name for the justification flags. If we want the constant width the width() function should be used
before each insertion or extraction statement. Hence, we have called width() function again and

OOPS and C++ Formating Flags & Manipulators 55

displayed the string. Now, you will see the string left justified. To set the default flag again we have
called the setf() function with ios::right flag.

Manipulators

Every time calling ios member functions to display formatted output becomes tedious. Manipulators
provide a clean and easy way for formatted output. Using manipulators the formatting instructions are
inserted directly into the stream. Also, we can create our own manipulators. endl is an example of
manipulator.

Manipulators are of two types, those that take an argument and those that don't. The slide shows few
examples of manipulators.

Using Manipulators

Consider the program given in the slide, which is the same program that we discussed earlier but
makes use of manipulators for formatting. To set the showbase and uppercase flags we have called a
manipulator setiosflags(). setiosflags() is a manipulator that takes one argument. Next, to display
values of i and j in hexadecimal form, we have used hex flag directly in cout statement. To print the
value of i in decimal form we have reset the number flag to dec.

To display a string in specified number of columns instead of calling the width() function we have
used a manipulator called setw(). As stated earlier, by default string gets displayed right justified. To
left justify it we have used the setiosflags() manipulator with left flag and displayed the string again.
To reset the default flags, we have used another manipulator resetiosflags().

OOPS and C++ Creating Manipulators 79

Creating Manipulators

In this lecture you will understand:

* How to create no-argument manipulator
* How to create one-argument manipulator

80 Creating Manipulators OOPS and C++

Creating No Argument Manipulator

Though the list of manipulators provided by the iostream library is quite impressive, at times we may
want to create our own manipulators. Let us see how to create a zero-argument manipulator.

In the program given in the slide, we have created a manipulator that places the cursor at the
beginning of the same line. Let's understand this.

In main() we have written cout << ret ; Since << is an overloaded operator internally this statement
becomes cout.operator << (ret). The << operator has been defined in 'iostream.h' as follows:

ostream& ostream :: operator << (ostream& (*_f) (ostream&))

return (*_f) (*this) ;

In the call to the operator <<() function, ret() being a function what is being passed to a function is
the pointer to the function. Hence, when we pass the address of ret() to the operator<<()
overloaded function it collects the address of ret() function in a pointer to a function. This pointer to
a function receives an ostream reference and returns an ostream reference. Hence, we have defined
ret() with the prototype that receives the ostream reference and returns ostream reference. Now,
when the control reaches in operator<<() function a call is made to our ret() function with *this as
the parameter through the statement (* f) (*this). Here, *this represents cout object because the
operator function is called through the cout object. We have collected this object in our definition of
ret() function and used this object to insert carriage refurn in the output stream through the statement
0<<"r';

Creating One-argument Manipulator

We saw how to create a zero-argument manipulator. However, creation of manipulators with
argument is pretty convoluted. Here we have created a manipulator called string, which receives an
int as an argument and outputs its string equivalent. To implement the string manipulator we have
defined a class called string. This class consists of three data members, str to hold the final string.
arr to hold the string equivalents of digits. num to hold the number to be converted to string. The
class also consists of a constructor and an overloaded operator<<() function. This function is
implemented as a friend function. It is because this function is intended to work on objects of two
different types.

Slide Number 5

Here, in main() we have used the string manipulator in the statement cout << string (105).

string (105) is a call to the one-argument constructor. This creates a nameless object. Now the
statement will become cout << the nameless object of type string. Since no overloaded operator that
takes string as an argument is defined in ostream class our operator <<() function gets called.
Within the operator << () function we have separated the digits of the specified number. The
separated digit is used as an index in the array to retrieve the string equivalent of it. All the strings are
concatenated in the data member str. Next, the str is displayed through o. Lastly. o is returned back
to main(). This is necessary because there can be a cascaded cout statement like cout << string (
105) <<endl;

OOPS and C++ Buiffered & File I/'O 81

Buffered & File 1/O

In this lecture you will understand:

What is buffered VO

The iostreain library

File I/O using stream

The modes available for opening a file
What are error flags

* ¥ ¥ ¥ ¥

82 Buffered & File I/O OOPS and C++

Buffered I/0

Suppose we wish to read the contents of some file, say CHI1PR1.CPP and display them on the screen.
The approach that we may follow to do this could be as follows:

We can read a character, display that character on the screen, again read a character again display it
on the screen. This can be continued till we do not reach the end of file. This seems to be logical, but
is pretty inefficient, as it would involve lot of disk reads. Moreover, every time we intend to read the
disk has to rotate, the character to be read must come below the read/write head, such that the head
can advance and carry out the reading. A lot of time would be spent in doing this for every character.
Instead, it would make more sense to read the entire file, store it at some place in memory called
buffer and then read the characters from the buffer rather than from the disk. This would be more
efficient.

Similarly, while writing characters to the disk there is no point in doing a write operation for every
character. Instead, it would be more efficient to first store all the characters in the buffer and then
write this buffer to the disk.

This type of input/output is known as buffered I/O.

Hierarchy

The iostream library provides classes for performing console I/O as well as file I/O. We have already
seen the Console /O classes in the last lecture. This slide shows classes that are used for file /O. As
seen earlier, ios is the root class of iostream library. In addition to the classes istream and ostream
another class called fstreambase is also derived from the ios class. The fstreambase class contains
an object of the filebuf class, which manages file-oriented buffer. The filebuf class is derived from
streambuf class, which we have already seen.

A class iostream is derived from both the istream and ostream classes by multiple inheritance. So,
the object of iostream class can be used for both input and output.

To enable users to work on disk files the iostream library provides a set of three classes viz.
ifstream, ofstream and fstream. The ifstream class is for input, ofstream for output and fstream
for both input and output. The ifstream class is derived by multiple inheritance from istream and
fstreambuf classes. The ofstream class is derived by multiple inheritance from eostream and
fstreambuf classes. The fstream class is derived by multiple inheritance from iostream and
fstreambuf classes. The ifstream, ofstream and fstream classes are declared in “‘fstream.h’ file.

File I/O

File I/O can be done in two modes - text and binary. Text I/O is further divided into formatted /O
and unformatted I/O. In the formatted [/O, as the name suggests, we can use various formatting flags
and manipulators to format the output. In short, we can decide how the output should look like. In
unformatted I/O we can perform input/output character by character. The output cannot be formatted.
The major difference between text I/O and binary I/O is that in text I/O numbers are also stored as
series of characters, whereas, in binary IO numbers are stored as bytes. For example, in text /O 435
is stored as three characters 4, 3 and 5, whereas, in binary mode it is stored as a 2-byte integer.

Formatted File 1/0

In formatted file I/O numbers are stored on a disk as a series of characters. Thus, 12.35 will get stored
as characters '1", '2', etc. and so instead of occupying 4 bytes as a float it will occupy 5 bytes in file.
The program given in the slide demonstrates how to perform formatted file I/O to write an int, float,
char and a string into the file and read them back.

OOPS and C++ Buiffered & File I/'O 83

Here, we have defined an object o of class ofstream. We have initialised this object with file
'data.dat’. When we pass a filename to the ofstream constructor this file gets opened. If the file does
not exist it gets created. If the file exists, it gets overwritten and the old data is replaced by the new
data. We have seen in the previous slide that ofstream class is derived from the ostream class. So,
We can use << operator to write data in the file using the object of ofstream class. Since the numbers
are stored as characters and not as a fixed-length field we have to specify explicitly where the
numeric data ends, otherwise, when we read the data from file, the extraction operator would not
know where the one number ends and another begins. For this, it is necessary to give a space as a
delimiter between the numeric data. For the same reason, two strings must be separated with a space.
This restricts the use of embedded spaces between a string.

After writing data in the file we have closed it using the close() member function. We have then
opened the same file for reading. For this, we have defined an object of ifstream class and passed to
the constructor the name of the file. Since, ifstream class is derived from istream class we can use
>> operator to read the data from a file. The data read is collected in the variables and displayed
using cout.

When we include the ‘fstream.h’ file we don't need to include ‘iostream.h’ file because ‘iostream.h’
1s included in “fstream.h’ file.

Strings With Embedded Blanks

In the program given in the slide, the user can input as many strings as he wants from keyboard.
These strings are saved in a file 'strings.dat' and later on displayed on the screen.

We have defined an object of ofstream class and passed to it the name of the file. We have declared a
char array and a char variable. We have run a loop, which would run till the variable ans contains
'y, i.e, till the user wants to enter more strings. To get the multiword string we have called a function
getline(), which is a member function of istream class. We have concatenated a newline character at
the end of each string. This is necessary because getline() function reads characters until it
encounters "\n' and we are going to read the strings from file using getline() function. So, we must
mark the end of line by "n'. We have written the strings in the file using << operator. We have then
prompted the user to enter 'y' if he wants to enter more strings otherwise 'n'. We have obtained user's
input in ans and then called an istream function ignore() to skip the Enter character. Once control
comes out of the loop we have closed the file.

Slide Number 6

Next, we have opened the file by creating an object of ifstream class. We have read the strings from
the file and displayed them on the screen. We have read strings in a loop, which runs until end of file
is reached. We have checked for the end of file using eof() function of ios class. We have used
getline() function to read strings from file. When the end of file would be encountered getline()
function would read the end of file character. This would set the ios::eofbit error status flag. The
eof() function would read this flag and would return non-zero value. Thus, the loop would get
terminated. The strings are displayed using cout. At the end we have closed the file.

Opening Modes

In the previous programs we had not specified file-opening modes while creating the ifstream or
ofstream objects but still the files got opened in appropriate modes. This is because both ifstream
and ofstream classes use default opening modes, which are set as ios::ouf in ofstream and ios::in in
ifstream. This slide shows various file opening modes available in the iostream library. Since these
modes are defined as enums in the ios class we must access them using ios::. By default the file gets
opened in text mode. To open the file in binary mode we must specify ios::binary while creating the
stream objects.

84 Buffered & File I/O OOPS and C++

Error Flags

We have seen three main features of the ios class viz. formatted flags, opening modes and error status
flags. We have discussed formatted flags and opening modes. Let us now see what are the error flags
provided by ios.

The error status flags are the enumerated data and are provided to report errors that occurs in input
and output operations like opening file, reading from file, writing to file reaching end of file, etc.

For every error flag there is a corresponding function, which we can call and check if the error flag is

set. The error flags, their meanings, corresponding functions and the purpose of functions are shown
in this slide.

OOPS and C++ Character & Binary I/O 85

Character & Binary I/0

In this lecture you will understand:

How character I/O is performed
How to perform binary /O

How to position a file pointer
How to write data to printer
C++ names for hardware devices

* ¥ ¥ ¥ ¥

86 Character & Binary I'O OOPS and C++

Character I/0

So far we have used ofstream class to write the data in the file and ifstream class to read it back
from the file. Instead of using two separate classes we can perform input and output by using only
one class i.e. fstream class. Since fstream class is derived from iostream class it can perform both
input and output operations. The program given in the slide, shows how to input and output contents
character by character.

We have defined an object of the fstream class and passed to it the file name. In fstream
constructor we have to specify modes because there is no default mode defined in this constructor.
Hence, we have specified the opening modes as in and out so that we can write in as well as read
from the file. We have then written a string character by character in the file by calling the put()
member function of ostream class.

Next, to read the characters from first character onwards, we must place the file pointer at the
beginning of the file. For this, we have used seekg() function, which is a member function of the
istream class. We would see the file pointer positioning functions in detail in the slides to follow. To
read the characters we have used the get() function of istream class. We have read the characters
until end of file is encountered. We have then displayed the characters read from the file.

Note that we have not closed the file. This is not necessary because if we don't close the file,
destructors of the ifstream, ofstream and fstream classes close the file for us. So, as soon as object
of fstream class would go out of scope its destructor would get called and the file would get closed.

Binary I/O

We have seen a program to write an int, float and a char in a file in the text mode. We have also seen
the limitations of writing numeric fields in text mode. In this mode each digit in a number is stored as
a character resulting in occupying more memory than necessary. This becomes inefficient at the time
of storing records that contain several numeric fields. The solution is to use binary I/O. In binary /O
the data is stored in a file in the way it is stored in RAM. So, writing an integer in a file in binary
mode would occupy only 2 bytes irrespective of number of digits of the number.

The program given in the slide writes a record in a file and reads it back. We have defined an array of
structure book. We have also defined an object of ofstream class to open the file 'data.dat' in binary
mode. We have written records in this file using a ofstream member function write(). Then we have
passed the buffer and its size to the write() function. This function merely transfers the buffer passed
to it from memory to the disk file without taking care about how the data is formatted. After writing
records we have closed the file.

Slide Number 3

To read records from the file we have defined an ifstream class object. Since we have written data in
binary mode we must read it in binary mode. This time to read records from file we have used the
read() member function of the ifstream class. After reading the record we have displayed it using
cout. We have repeated this until end of file is reached.

Note: In formatted text mode, we should use << operator to write data and >> operator to read data.
In unformatted text mode, we should use put() and get() functions to read and write data
respectively. In binary mode, we should use read() and write() functions.

Positioning File Pointer

If we are working with a file we may be required to go back to the beginning of the file and write
something there, or we may need to modify the existing contents. In such a situation we need to move

OOPS and C++ Character & Binary I/O 87

a pointer called ‘file pointer’ at appropriate position. In the program given in the slide, we would see
how to move file pointer in the file.

We have defined an array of structure book. We have defined an object of ofstream class and written
the records in the “bnames.dat’ file using the write() member function of the ofstream class.

Slide Number 5

When we write in a file the file pointer associated with that file also moves. So, after writing a few
records in a file, the pointer would be pointing at the end of the last record. Now, if we write some
more record, it will get written at the end of this last record. Here, we have created one more object
b1 of the book structure and written that object in the file. Obviously, it would get added after the last
record. However, if we want to delete the previously added record and write new record in its place
we must position the pointer at the beginning of that record. To position the pointer we have used the
ostream member function seekp().

The seekp() function is overloaded to take either one or two parameters. If we use one argument
seekp(), we can mention the position in bytes relative to the beginning of the file. In the two
argument version we can specify the position in bytes relative to the end of file, beginning of the file
and current position. For this, we can use end, beg and cur flags respectively. Here, we have
specified that the pointer should move two records back from the end. Then we have written another
record in the file. This record will overwrite the previous record. We have then closed the file.

Similarly, we can get the current position of the file pointer by using tellp() member function of
ostream class. The tellp() function returns position in bytes.

To read the file we have again opened the file, this time with the object of ifstream class. We have
positioned the pointer before the second last record and read the record by calling the read()
function. We have then displayed the record read from the file.

Slide Number 6

Here we have first moved the file pointer at the end of the file. This time we have used the istream
class member function seekg() to move the pointer. Now, if we obtain the pointer position we can
get the total bytes written in the file. We have used tellg() member function of istream class to get
the same. We have then calculated the number of records contained in the file by dividing total bytes
by the size of one record.

Now, if we have to print all the records of the file we must position the file pointer at the beginning
of the file. We have done so using the statement i.seekg (0). We have displayed all the records and
then closed the file.

Remember that we cannot call seekg() and tellg() functions using ofstream object and seekp() and
tellp() functions using ifstream object. However, if we use fstream for file I/O we can use any of
them.

Printer Output

The iostream library has made it easy to read data from various input devices and write data to the
output devices. The program given in the slide shows, how to print contents of disk file, 'data.dat' on
the printer.

The file must be present on the disk so that we can open it for reading. If the file does not exist then
rest of the code should not get executed. Hence, in the program we have checked whether the file is
opened or not using the fail() function, where fail() is an error flag.

Operating system has given familiar names to the hardware devices. We can use these names as file
names for accessing these devices. The various names are discussed in the next slide. The printer is

88 Character & Binary I'O OOPS and C++

generally connected to the first parallel port. So, the file name for the printer should be PRN or Ipt1.
In the program, we have defined the object of ofstream class. We have called a member function
open() of class ofstream which opens the specified port. We have specified PRN to open the port on
which printer is connected. Since we have called open() using object of ofstream class the port
would get opened for writing. Next, using the while loop we have read the contents of file character
by character and sent the same to the printer. At the end we have put a character "xOC'. This character
causes the page to eject from the printer.

Hardware Device Names

This slide shows the various device names, which we can use as file names in the ifstream or
ofstream classes.

OOPS and C++ Error Handling 89

Error Handling

In this lecture you will understand:

* What is exception handling
* How to handle runtime errors
* How to catch exception

90 Error Handling OOPS and C++

Types Of Errors

Exceptions are errors that occur at run time. The reasons why exceptions occur are numerous. Some
of the more common ones are:

(a) Falling short of memory

(b) Inability to open a file

(c) Exceeding the bounds of an array

(d) Attempting to initialize an object to an impossible value

When such exceptions occur, the programmer has to decide a strategy according to which he would
handle the exceptions. The strategies could be, displaying the error messages on the screen, or
displaying a dialog box in case of a GUI environment, or requesting the user to supply proper data or
simply terminating the program execution.

Handling Runtime Errors

Usually C programmers deal with exceptions in two ways:

(a) Following the function calls with error checks on return values to find whether the function did
its job properly or not.

(b) Using the setjmp and longjmp mechanism. This approach is intended to intercept and handle
conditions that do not require immediate program termination. For example, if a recursive
descent parser detects an error, it should report it and continue with further processing.

Let us look at these methods more closely.
Checking Function Return Value

In C programs a function usually returns an error value if an error occurs during execution of that
function. For example, file-opening functions return a NULL indicating their inability to open a file
successfully. Hence, each time we call these functions we can check for the return value. This is
shown for some fictitious functions funl(), fun2() and fun3() in the slide.

There are three problems with this approach:

(a) Every time we call a function we must check its return value through a pair of if and else. Easier
said than done! Swrrounding every function call with a pair of if and else results in increase in
code size. Also, too many if-elses make the listing lose its readability.

(b) This approach cannot be used to report errors in the constructor of a class as the constructor
cannot return a value.

(c) It becomes difficult to monitor the return values in case of deeply nested function calls.
Especially so if the functions belong to a third-party library.

Catching Exception

C++ provides a systematic, object-oriented approach to handling run-time errors generated by C++
classes. The exception mechanism of C++ uses three new keywords: throw, catch, and try. Also, we
need to create a new kind of entity called an exception class.

Suppose we have an application that works with objects of a certain class. If during the course of
execution of a member function of this class an error occurs, then this member function informs the
application that an error has occurred. This process of informing is called throwing an exception. In
the application we have to create a separate section of code to tackle the error. This section of code is

OOPS and C++ Error Handling 91

called an exception handler or a catch block. Any code in the application that uses objects of the
class is enclosed in a try block. Errors generated in the try block are caught in the catch block. Code
that doesn't interact with the class need not be in a try block. The program given in the slide shows
how to throw and catch exception:Here math is a class containing a function fun() in which runtime
errors might occur. An exception class called excep has been specified. In main() we have enclosed
the part of the program that calls the fun() function. If the condition d = 0 gets satisfied then
function fun() throws an exception, using the keyword throw followed by the exception calls object.
When an exception is thrown control goes to the catch block that immediately follows the fry block.
Here the value of the object e would be passed, which would get collected in p.

How The Whole Thing Works

Let's summarize the events that take place when an exception occurs:

(a) Code is executing normally outside a try block.

(b) Control enters the try block.

(c) A statement in the try block causes an error in a member function.

(d) The member function throws an exception.

(e) Control transfers to the exception handler (catch block) following the try block.

Note that there can be multiple calls to different functions in the single try block. If each function
throws the same exception then only one catch block would be required after the try block. You can
appreciate how clean the code would be. Just about any statement in the try block can cause an
exception, but we don't need to worry about checking a return value for each one. The try-throw-
catch arrangement handles it all for us, automatically.

If different calls throw different types of exceptions then there can be multiple catch blocks after one
try block to handle those exceptions.

Exception Handling Tips

The slide shows various points about the exception handling.

OOPS and C++ Constructors in MI 93

Constructors in M1

In this lecture you will understand:

* How constructors in Multiple Inheritance are defined
The need of virtual base classes
* virtual destructors

94 Constructors in MI OOPS and C++

Constructors In MI

Let us see how constructors are handled in multiple inheritance. Consider the program given in the
slide.

Here, the class d1 is derived from two classes bl and b2. In class d1, the constructors of the base
classes are called in the order in which the classes have been inherited. In this program the classes
have been inherited in the following order:

class d1 : public b1, public b2

Note that the destructors in case of multiple inheritances are called in exactly the reverse order of the
constructors.

It doesn't matter the order in which constructors are called:
d1():b2(), b1()

Why is the order of calling constructors governed by the order in the class declaration? This is
because if you change the order of constructor calls while defining the constructor, you may have two
different call sequences in two different constructors, but the poor destructor wouldn’t know how to
properly reverse the order of calls for destruction.

Conflict?

Now consider the program given in the slide. Here, time and date are two different classes each
having function show() with same prototype. The class scheduler is derived publicly from class
time and date respectively. Through the display() function of scheduler class we have called
show() function twice. Then in main() we have created an object of scheduler class and called
display() and show() functions through this object.

On compilation the compiler reports an error since scheduler inherits two copies of show(), one via
time and another via date. Hence when we attempt to call show() at two places one in
scheduler::display() and second in main() as x.show(), the compiler would not know whether we
intend to call the copy of time or that of date.

What’s Wrong?

The program given in the slide shows one more situation that causes a conflict.

Here, b is a base class. d1 and d2 are two classes each derived from base class b. Furthermore, der is
a class derived from two classes d1 and d2 respectively.

On compilation the compiler reports an error. The class der inherits two copies of data, one via d1
and another via d2. This causes a conflict, since in der::showdata() we are trying to display value of
data. This is an ambiguous situation for the compiler, hence it flashes an error.

In Memory View

This slide gives the in-memory view of the classes discussed in earlier slide.

Here, the class b has a data member data. Since the two classes d1 and d2 are derived from the class
b these two classes have inherited data of the class b. Then the class der derived from the classes d1
and d2, too has inherited data from both d1 and d2. So, when the object of der will be created it will
have two copies of data having different addresses.

The solution for such ambiguous situation is to make d1 and d2 as virtual base classes. In the next
slide we will see how to use the virtual base class.

OOPS and C++ Constructors in MT 95

Virtual Base Class
Consider the program given in the slide.

Here, we have made d1 and d2 as virtual base classes by adding a keyword virtual. Making the base
classes virtual cause them to share single copy of the data members inherited from the base class. It
means that d1 and d2 would have only one copy of data members of class b and so if we now access
b's data members in der there will be no ambiguity.

Virtual Destructors

While destroying an object the current destructor always knows that the base-class members are alive
and active. It should not so happen that the base class members get destroyed through the base class
destructor and then the derived class destructor tries to access them. This can be ensured by first
calling the derived class destructor followed by the base class destructor. Thus, the destructor can
perform its own cleanup, then call the base class destructor, which will perform its own cleanup. This
it can do because it knows what it is derived from, but not what is derived from it.

Consider a situation where a derived class object is created using new. The address of this object can
be assigned to a pointer to a base class object. Now if we delete the pointer, since the pointer is a base
class pointer this would result in a call to the base class destructor. Ideally, firstly the derived class
destructor should be called followed by the base class destructor. This can be ensured by using a
virtual destructor in the base class. The program given in the slide shows how this can be
implemented.

OOPS and C++ Inline Functions 97

Inline Functions

In this lecture you will understand:

inline Functions

Usage of const qualifier

The const functions

When to use mutable keyword

* # O * ¥

98 Inline Functions OOPS and C++

inline Functions

One of the important advantages of using functions is that they help us save memory space. As all the
calls to the function cause the same code to be executed, the function body need not be duplicated in
memory.

Imagine a situation where a small function is getting called several times in a program. As you must
be aware, there are certain overheads involved while calling a function. Time has to be spent on
passing values, passing control, returning value and returning control. In such situations to save the
execution time you may instruct the C++ compiler to put the code in the function body directly inside
the code in the calling program. That is, at each place where there's a function call in the source file,
the actual code from the function would be inserted, instead of a jump to the function. Such functions
are called inline functions. The in-line nature of the individual copy of the function eliminates the
function-calling overhead of a traditional function. The program given in the slide shows inline
function at work.

Note that the function must be declared to be inline before calling it. On compilation the contents of
the reporterror() function would get inserted at two places within our program. These obviously are
the places where reporterror() is being called.

What Is p?

The keyword const (for constant), if present, precedes the data type of a variable. It specifies that the
value of the variable will not change throughout the program. Any attempt to alter the value of the
variable defined with this qualifier will result into an error message from the compiler.

The const qualifier ensures that your program does not inadvertently alter a variable that you intended
to be a constant. It also reminds anybody reading the program listing that the variable is not intended
to change. Variables with this qualifier are often named in all uppercase, as a reminder that they are
constants.

The pointers when declared as const, ensures that the program does not inadvertently alter the address
in pointer variable that you intended to be a constant. Consider the code snippet given in the slide.

char *p = "Hello" ; // string is fixed pointer is not
*p="M"; /] error
p="Bye" ; [/ works

Here, p is a character pointer holding base address of string Hello. The string is constant here, but not
the pointer p. Hence the second statement here would cause error, but the third statement would work
as we can make p (here), to point to some other string.

const char *q ="Hello" ; // string is fixed pointer is not
*q="M"; I/ error
q="Bye" ; // works

Here too, the string Hello is fixed and the pointer q is variable. Hence trying to change the string
pointed to by q would cause error. However, q can be made to point to some other string.

char const *s = "Hello" ; // string is fixed pointer is not
*s="M'; Il error
s ="Bye"; //works

OOPS and C++ Inline Functions 99

This is similar to above two cases.

char * const t = "Hello" ; // pointer is fixed string is fixed
t="M"; // error
t="Bye"; // error

Here, both, the char pointer t and the string to which it is pointing to are fixed. This means neither we
can change the contents of string nor we can make t to point to some other string. The same can be
achieved as shown below:

const char * const u = "Hello" ; // string is fixed so is pointer
*u="M": // error
u="Bye"; / error

Const Functions

A const member function guarantees that it will never modify any of its class's member data. The
program given in the slide shows this.

Here, function modifydata() has been declared as const function. Hence it cannot modify data. If it
tries to, a compiler error ‘Cannot modify a const object’ results.

Note that to make modifydata() constant the keyword const is placed after the declarator but before
the function body. If the function is declared inside the class but defined outside it then it is necessary
to use const in declaration as well as definition. Member functions that do nothing but acquire data
from an object are obvious candidates for being made const. In our program one such function was
showdata(), which too could have been made a constant function.

mutable Keyword

When we create a const object none of its data members can change. In a rare situation, however, you
may want some data member should be allowed to change despite the object being const. This can be
achieved by the mutable keyword as shown in the program given in the slide.

‘When the car is sold its owner would change, rest of its attributes would remain same. Since the
object ¢l is declared as const none of its data members can change. An exception is however made in
case of owner since its declaration is preceded by the keyword mutable. The change is brought about
through the function changer(). Trying to change other members would result in an error as the data
members have not been declared as mutable and hence cannot be changed. Had c1 been a non-const
object we would have been allowed to change the owner as well as the model.

OOPS and C++ Data Conversion 101

Data Conversion

In this lecture you will understand:

* How to carry out various data conversions

102 Data Conversion OQOPS and C++

Data Conversion

We are already aware that the = operator assigns a value from one variable to another in statements
like

inta, b;
a=b;

We have also used the = operator in context of user-defined data types. Here, = assigns the value of
one user-defined object to another, provided they are of the same type, in statements like

matrix3 = matrix1 + matrix2 ;

Thus assignments between types, whether they are basic or user-defined, are handled by the compiler
with no effort (i.e. implicit) on our part, provided that the same data type is used on both sides of the
assignment operator. At times we may want to force the compiler to convert one type of data to
another. This can be achieved by using typecasting. Typecasting provides an explicit conversion.

Data Conversion

The program given in the slide shows how to convert between a basic type and a user-defined type
and vice versa. In this program the user-defined type is a string class and the basic type is int. The
program shows conversion from string to int and from int to string.

Here, to convert an int to a user-defined type string we have used a constructor with one argument. It
is called when an object of type string is created with a single argument. The function assumes that
this argument represents an int, which it converts to a string and assigns it to str using the itoa()
function. Thus the conversion from int to string is carried out when we create an object in the
statement

string s3 =789 ;
A similar conversion is carried out when the statement
s1=150;

is executed. Here we are converting an int to a string, but we are not creating a new object. The one
argument constructor is called even in this case. When the compiler comes across a statement that
needs a conversion, it looks for any tool that can carry out this work for it. In our program it finds a
constructor that converts an int to a string, so it uses it in the assignment statement by first creating an
unnamed temporary object with it's str holding the value corresponding to the integer 150 and then
assigns this object to s1. Thus if the compiler doesn't find an overloaded = operator it looks for a
constructor to do the same job.

To convert a siring to an int the overloaded cast operator is used. This is often called a conversion
function. This operator takes the value of the string object of which it is a member, converts this
value to an int value and then returns this int value. This operator gets called in two cases:

i=int(s2);

and

i=s3;

In the second assignment the compiler first searches for an overloaded assignment operator. Since

this search fails the compiler uses the conversion function to do the job of conversion.

One might think that it would not be a sound programming practice to routinely convert from one
type to another. However, the flexibility provided by allowing conversions often outweighs the
dangers of making mistakes by allowing mixing of data types.

OOPS and C++ Data Conversion 103

Data Conversion

Let us now see how do we go about converting data between objects of different user-defined
classes? The same two methods used for conversion between basic types and user-defined types
apply to conversions between two user-defined types. That is, we can use a one-argument
constructor, or we can use a conversion function. The choice depends on where we want to put the
conversion routine: in the class declaration of the source object or of the destination object.

When the conversion routine is in the source class, it is commonly implemented as a conversion
function as shown in the program given in the slide. The two classes used in the program are date
and dmy. Both classes are built to handle dates, the difference being the date class handles it as a
string, whereas the dmy class handles it as three integers representing day, month and year.

Suppose d1 is an object of the type date, which is not initialized, and d2 of the type dmy, which has
been initialised. Next an assignment is carried out through the statement d1 = d2.

Since d1 and d2 are objects of different classes. the assignment involves a conversion, and as we
specified, in this program the conversion function date() is a member of the dmy class. This function
transforms the object of which it is a member to a date object, and returns this object, which main()
then gets assigned to d1.

Data Conversion

Let’s now see how the same conversion is carried out when the conversion routine is present in the
destination class. In such cases usually a one-argument constructor is used. However, things are
complicated by the fact that the constructor in the destination class must be able to access the data in
the source class to perform the conversion. That is, since the data day, mth and yr in the dmy class is
private we must provide special functions like getday(), getmth() and getyr() to allow direct
access to it. The program in the slide implements this.

When we execute the statement d1 = d2 the one-argument constructor in the date class (whose
argument is a dmy object) gets called. This constructor function gets the access to the data of d2 by
calling the getday(), getmth() and getyr() functions. Finally it converts this data into a string. The
output of this program is similar to the earlier one. The difference is behind the scenes. Here a
constructor in the destination object, rather than a conversion function in the source object, handles
the conversion.

That brings us to the important question: when should we use a one-argument constructor in the
destination class, and when should we use a conversion function in the source class? Often this
choice is simple. If you have a library of classes, you may not have access to its source code. If you
use an object of such a class as the source in a conversion, then you’ll have access only to the
destination class, and you’ll need to use a one-argument constructor. Or, if the library class object is
the destination, then you must use a conversion function in the source. What if we use a conversion
function as well as a one-argument constructor? The compiler would of course flash an error since
this becomes an ambiguous situation.

OOPS and C++ Object Slicing 105

Object Slhicing

In this lecture you will understand:

What is object slicing

What is Run Time Type Identification (RTTT)

How to get RTTI information

The usage of reinterpret_cast, const cast, static_cast, etc.

* # O * ¥

106 Object Slicing OOPS and C++

Object Slicing

The virtual functions ensure that the code that manipulates objects of a base type can without change
manipulate derived-type objects as well. Virtual functions should however always be called using
either a pointer or a reference. If we try to do so using an object a phenomenon called object slicing
takes place. The program given in the slide throws more light on this effect.

When we use an object instead of a pointer or reference as the recipient of the upcast, the object is
sliced until all that remains is the subobject that corresponds to the recipient. That is, if an object of a
derived class is assigned to a base class object, the compiler accepts it, but it copies only the base
portion of the object. It slices off the derived portion of the object. Hence when we make the call
b.fun() only the member function in the base class gets called.

Object slicing actually removes part of the object rather than simply changing the meaning of an
address as when using a pointer or reference. Because of this, upcasting into an object is not often
done: in fact, it’s usually something to watch out for and prevent. You can explicitly prevent object
slicing by putting pure virtual functions in the base class: this will cause a compile-time error when
we try to create a base class object.

RTTI

RTTI stands for Run Time Type Identification. In an inheritance hierarchy, using RTTI we can find
the exact type of the object using a pointer or reference to the base class. The idea behind virtual
functions is to upcast the derived class object’s address into a pointer to a base class object and then
let the virtual function mechanism implement the correct behavior for that type. Does this mean that
an attempt to know the type of the derived class object from the base class pointer (RTTI) a step
backward? No. At times it is useful to know the exact type of the object from the base class pointer.
You may require this information to perform some specific operation more efficiently.

There is also a practical reason for providing RTTI as a language feature. Most class libraries were
using RTTI of some form internally. So if RTTI is made a language feature you would have a
consistent syntax for each library and would not be required to worry whether it is built into a new
library that you intend to use.

C++ provides two ways to obtain information about the object’ class at runtime. These are:
(a) Using typeid() operator

(b) Using the dynamic cast operator

Let us explore them one by one.

The typeid() operator takes an object, a reference or a pointer and returns a reference to a global
const object of the type typeinfo. The code snippet given in the slide uses it.

We have a base class called base. We have derived two classes from it: derl and der2. Then we have
created two pointers to the base class objects: p1 and p2. The return value of typeid() can be
compared using == as shown in the slide. If you execute this code you would get the output as ‘of
same type’ for both the comparisons.

RTTI should be used only with polymorphic classes i.e. those, which have a virtual function in the
base class. In absence of polymorphism the static type information is used. Also runtime type
identification doesn’t work with veid pointers, because a void * truly means no type information at
all.

OOPS and C++ Object Slicing 107

RTTI

Another way to obtain type information at runtime is by using the dynamic cast operator. The code
snippet given in the slide shows its usage.

The dynamic_cast operator attempts to convert the pointer pl, which can contain either the address
of a derl object or the address of der2 object or the address of the base object. If the result is non-
zero then p1 was indeed pointing at base. If the result is zero it means it pointed to something else.

Although we have used the dynamic cast and typeid with pointers they work equally well with
references.
reinterpret cast

This casting mechanism is the least safe and more often than not a source of bugs. If for some
unusual reason you need to assign one kind of pointer type to another, you can use reinterpret cast.

The reinterpret cast can also be used to convert pointers to integers or vice versa as shown in the
slide.

The use of reinterpret cast is not recommended, but sometimes it’s the only way out. Whenever
you feel the need to use the explicit type conversion you should take time to reconsider it. You would
find that in many situations it could be completely avoided. In others it can be localized to a few
routines within the program. Always remember that whenever you are using a cast you are breaking
the type system. And that is fraught with dangers.

const cast

The const_cast permits us to convert a const to a non-const as shown in the slide.

If we are to assign address of a const object (a in our program) to a pointer to a non-const (ptr) we
should use the const cast.

Another place where we can use a const_cast is when we wish to change a class member inside a
const member function. However, this is a workable way. A better way is to define data as mutable.
This way in the class definition itself it would be clear the data member might change in a const
member function.

Static Cast

A static_cast is used for conversions that are well-defined. These include:
(a) castless conversions
(b) narrowing conversions
(c) conversions from void *
These are shown in the slide.
The advantage of using static_cast<> is that we can easily search for all the type casting done in the
program This is useful while debugging when something has gone wrong.
Example

Microsoft COM (Component Object Model) is a specification to build language independent
components. The slide shows a COM component consisting of a class with Add() function. This
class implements an interface containing pure virtual Add() function. Each COM component
provides code known as class factory that is responsible for creating component class objects. From
the client program we need to call a function in the COM library, which calls the function in the class
factory of the COM component and returns the address of the newly created COM object. We need to

108 Object Slicing OOPS and C++

store the address in the interface pointer. This is because we never come to know about the class
name of the component class. The client has only the interface pointer. The interface is the base class
of the component class.

Here the CoCreateInstance() function is a global function hence call to it is non-OO.

Smart Pointers

Consider the code snippet given in the slide.

For making a call to the CoCreatelnstance() function in OO style, we use a smart pointer class.
This class overloads an -> operator. It also provides a member function CreateInstance() that
internally calls the CoCreateInstance() function. In the client program we create an object of the
smart pointer class and calls the CreateInstance() function. The CreateInstance() function stores
the address of the component object in the interface pointer, which it obtains by calling the
CoCreatelnstance() function.

Then we call the Add() function using the object of the smart pointer class. We call this function
using the > operator. This calls the overloaded > operator function, which returns the address stored
in interface pointer. Using this address the Add() function is then called. Hence the Add() of the
COM component is called.

The important point to note here is that the smart pointer class object works like an object as well as
pointer. Here the CoCreatelnstance() call is made in object-oriented style as well the call to
function inside the COM component is made using the pointer notation, which was the past
experience.

OOPS and C++ Class Libraries 109

Class Libraries

In this lecture you will understand:

What are different class libraries

What is STL

Containers, Iterators and Algorithms
What are different categories of containers

* # O * ¥

110 Class Libraries OOPS and C++

Class Libraries

Reuse of existing code is one of the primary goals that C++ addresses. Existing classes can be made
available for reuse by packaging them in a library. Several such class libraries are available. They are
Standard C++ Library, Standard Template Library and Microsoft Foundation Class Library.

A C++ program can call on a large number of functions from the Standard C++ Library that provide
efficient implementations of frequently used operations such as input and output. Each and every
entity in the library is declared in one or more header files. To use the classes declared in these header
files we need to #include them in out program. We have been using header files like “iostream.h’ and
‘lomanip.h’ in our programs. The Standard C++ Library consists of 50 headers files. These headers
together host implementation of the C++ library.

Microsoft Foundation Class (MFC) library contains hundreds of C++ classes. These classes are used
for programming Windows Operating System. Using these classes we can do virtually everything
that you would want to do under Windows.

We would see STL in the next slide.

Standard Template Library (STL)

The C++ Standard Template Library referred to, as STL is a C++ programming library that has been
developed by Alexander Stepanov and Meng Lee at the Hewlett Packard laboratories in Palo Alto,
California. The Standard Template Library (STL) is a general-purpose C++ library of algorithms and
data structures. It is a built-in container class library, used to store and process data. It is a part of the
standard ANSI/ISO C++ library.

The STL is implemented by means of the C++ template mechanism, hence the name Standard
Template Library. The STL can be applied in a very straightforward way, facilitating reuse of the
sophisticated data structures and algorithms it contains. It provides many of the basic algorithms and
data structures of computer science. The STL consists of various types of entities most important of
which are containers, algorithm, and iterators. We would learn more about containers and iterators in
the coming slides. Let us see what algorithms are.

Algorithms in STL are certain procedures that are applied to containers to process the data. STL
provides algorithms for operations like search, sort, merge, copy, etc. The algorithms are provided by
means of a template function. These template functions are not written as part of the container class,
but are provided as standalone template functions. Moreover, these functions can also be used on
ordinary C++ data members like arrays, or user-defined container classes.

Containers

A container is a template class that is used to store objects of other types such as int, float, double,
char, etc. It actually manages the objects of different data types. By saying managing the objects, we
mean that the container as a template class provides constructor, destructor, necessary operator
functions and additional member functions. Container classes form one of the most crucial
components of STL.

The container classes are divided into three categories. depending on the way the elements are
arranged. The categories are Sequence Containers, Associative Containers and Derived Containers.

A sequence container is a kind of container that organizes a finite set of objects in a linear
arrangement, provided that the elements are of the same type. Each element is related to the other
elements by its position. STL provides three basic kinds of sequence containers—vector, list and
deque.

OOPS and C++ Class Libraries 111

STL provides three derived containers. They are— stack, queue and priority queue. They are also
known as container adapters. Creation of these containers is based on sequence containers. The
derived containers do not support iterators and therefore they cannot be used for data manipulation.

Associative Containers are the one that provide fast retrieval of data from the collection, which is
based on keys. Associative container is not sequential and hence uses keys to access data directly.
The size of the collection can vary at runtime. The collection is maintained in order. There are four
types of associative containers—set, multiset, map and multimap.

Iterators

Iterators are special STL objects that are used to represent positions of elements in various STL
containers. More clearly, iterators play a role similar to that of a subscript in a C++ array. Iterators are
like references that allow the programmer to access a particular element, and to traverse through the
container.

The slide shows few more points about iterators.

Types of Iterators

There are many different kinds of iterators depending on the type of container with which they are
associated. At any given time, an iterator object is associated with only one container object.

In addition to the types given in the slide, the iterators can be const (e.g., “const_iterator”) or non-
const. Constant iterators can be used to examine container elements, but cannot be used to modify the
elements in the container. Non-constant iterators cannot be used with constant container objects.

OOPS and C++ Using Stack, Queue & Vector 113

Using Stack,, Queue & Vector

In this lecture you will understand:

* How to use sequence containers
How to use derived containers
* How to use associative containers

114 Using Stack, Queue & Vector OOPS and C++

Using stack

A stack object is a sequential container that allows insertion and deletion of elements only at one
end. It follows Last In First Out system for adding and retrieving the stack elements. This slide shows
the program that maintains a stack of integers.

A stack can be implemented using vectorlist or deque. We can specify the type of the underlying
container as the second parameter in the constructor of stack as shown below:

stack <int, vector<int> > stk ;
The default value is the class deque.

In the program we have created a stack to maintain integers. The object stk is a stack implemented as
a deque. Then using push() function we have added elements to the stack. The size() function
returns the total number of elements present in the stack. The top() function returns an element
present at the top of the stack. Hence we have called this function through a while loop that runs until
the stack becomes empty. This we have checked using empty() function. After displaying the
element at the top we have called pop() to remove an element at the top of the stack.

Finally #include the necessary header files. To use the stack template class we must #include the
<stack> header file. We can skip giving the “.h” extension. In this file the stack class is defined,
enclosed in the std namespace.

Using the queue class is same as using the stack class, hence we won’t write separate program
implementing the queue.

Using priority _queue (1/3)

Consider some jobs, which are to be processed by the CPU. The job, which has to be processed first,
depends on its priority. CPU should get these jobs in the ascending order of their priority number, i.e.
lower the priority number higher is the priority. There should be some function, which would arrange
these jobs as per their priorities. Let us see how this can be done with the help of priority queue
container.

In this program a priority queue holds objects of a class fasks in the form of a vector. Note the
statement that builds a priority queue.

priority_queue<tasks, vector<tasks>, prioritizetasks> pq ;

The above statement builds a priority queue pq to hold objects of class tasks as a vector.
Furthermore, the class prioritizetasks provides a function to decide the order in which the tasks
should get placed. We would define these classes later.

Here, firstly we have created an array t of tasks and initialized it at the same place. Then through a
for loop we have added the objects to the priority queue pq, by calling function push(). Finally, we
have displayed the contents of pq through a loop.

Using priority queue (2/3)
This slide shows the declaration of tasks and prioritizetasks classes.

The tasks class contains two data members out of which prne specifies the priority of the task. The
class also contains two-argument constructor that is used to initialize the data members. The class
overloads the << operator so that we can directly pass the object of the class to cout.

The prioritizetasks defines only the overloaded operator() function. This function would get called
while adding objects to pq in statement pq.push (t [i]) ; This function is used to sort the objects of
tasks according to the prno of the object. It means that this function must have access to the private

OOPS and C++ Using Stack, Queue & Vector 113

data member of the tasks class. To allow the prioritizetasks class to access the private data
members of the tasks class we have declared the prioritizetasks as a friend of the tasks class.

#include the necessary header files and declare the namespace std as shown in the slide. We have
extended the std namespace and have included tasks and prioritizetasks classes in it to avoid
ambiguity between the overloaded << operator declared in tasks class and std namespace.

Using priority queue (3/3)
This slide shows the definition of the member functions of the tasks and prioritizetasks class.

In the constructor of the tasks class we have initialized the pname and prno data members. In the
operator<<() function we have simply displayed the values of pname and prneo.

The operator() function compares the priorities of the two objects t1 and t2 and returns 0 if t1 is
smaller and 1 if it is greater. Thus, at the time of pushing values to the queue, the tasks get sorted
according to their priority and get stored in the queue.

Algorithms in STL are certain procedures that are applied to containers to process the data. STL
provides algorithms for operations like search, sort, merge, copy, etc. The algorithms are provided by
means of a template function. These template functions are not written as part of the container class,
but are provided as standalone template functions. Moreover, these functions can also be used on
ordinary C++ data members like arrays, or user-defined container classes.

Using vector (1/4)

Let us now see how to use the vector template class as a container of integers.

In this program we have created an object vec of the vector class and added elements to it by calling
the push_back() function. Then in the statement vector < int >::iterator vitr ; we have declared an
iterator vitr. When an iterator to a vector or a deque is created it is automatically created as a random
access iterator. Using this iterator we have traversed through the vector. The begin() and end()
member functions return the random access iterator to the starting and ending elements of the
container respectively. We have initialized the for loop with iterator to the starting position by calling
the begin() function. The loop will run until it reaches the end of the container. The iterator is
incremented using the ++ operator and is dereferenced using the * operator.

Next we have displayed the first element of the container by calling the front() member function.
Then we have called the at() function to obtain the 2™ element of the vector. Lastly. we have
obtained the last element of the vector by calling the back() function.

The vector container class is declared in std namespace defined in the <vector> header file. So, write
the #include statements as shown in the slide.

Using vector (2/4)

Next, in the program, we have again obtained the iterator to the start position again and have stored
the value 35 at that position. Iterators also allow using the [] operator to access the elements. Using
this operator we have stored 20 at second position in the vector. Then we have incremented the
iterator by 4 and stored 99 at that position.

Then we have displayed all the elements of the vector using iterator in a for loop.

To insert an element in the vector we have called the insert() member function and passed to it the
position and the value to be inserted. After inserting the value, we have again iterated the vector and
displayed all the elements.

Using vector (3/4)

116 Using Stack, Queue & Vector OOPS and C++

In this part of the program, we have firstly deleted an element from the specified position and then
popped an element from the back of the vector.

We have deleted the element at the second position using the erase() member function. For deleting
the elements at the end of the vector, we have called the pop back() function.

Using vector (4/4)

Lastly, we have cleared the vector by deleting all the elements at one shot by calling the clear()
member function. Using the empty() function we have checked whether the vector is empty. We
have displayed the appropriate message if the vector is empty.

OOPS and C++ Using List 117

Using List

In this lecture you will understand:

#* How to use list container

118 Using List OOPS and C++

Using list (1/5)

The list is a container, which implements a classic list data structure. Lists are implemented as doubly
linked list structures in order to support bi-directional iterators. Each element in the list contains a
pointer to the preceding and the next element in the list. Lists are better used when we want to add or
remove elements to or from the middle of the list. The header file required to be #included in a
program for lists would be <list>. In the next few slides we would see how to implement list
container.

In this program, we wish to create list Is of integers. We have called two functions such as
push back() and push front() to add elements at the end or at the beginning of the list
respectively. While adding elements at the beginning of the list the existing elements would get
shifted one place to the right.

The elements of the list are accessed using the iterator as we saw in the last lecture. The functions
front() and back() displays element at the first and last position of the list respectively.

Using list (2/5)

The functions pop back() and pop front() remove element at the end and at the beginning of the
list respectively. In case of pop front() function, after removing the element at the beginning of the
list, the remaining elements are shifted one place to the left of their existing positions.

Using list (3/5)

The iterator provided for the list is a bi-directional iterator, which can move, sequentially in a forward
or backward direction. As a result, random access to the elements in a list is not possible. This is the
reason why list does not support subscript operator []. Thus to insert an element at the 6™ position (in
a list of 7 elements), we have used the statement litr = Is.end() ; which returns an iterator referring to
the element at the 7% position. Next, we have decremented the value of iterator by 1, to refer litr to
the element at the 6™ position. The insert() function then adds element -20 at this position. Similar
steps are carried out to insert element at the 4™ and 5™ position.

The erase() function called next erases an element to which the iterator litr is referring to.

Using list (4/5)

The clear() function removes all the elements from the list. After deleting all the elements we have
added new elements to the list. For this, we have initialized an array and used the array elements to
populate the list.

The sort() function called in the program sorts the elements in the list in ascending order.
Using list (5/5)

Here, we have called the member function of the list container called reverse() that reverses the
order of elements in the list Is. Then we have displayed the elements using the iterator.

OOPS and C++ Using Set Multiset 119

Using Set Multiset

In this lecture you will understand:

* How to use map and multimap containers
How to use set and multiset containers

120 Using Set Multiset OOPS and C++

Using set/multiset (1/6)

There are four types of associative containers—set, multiset, map and multimap. In the coming
slides we would see programs using these containers.

The set container stores number of items and access them using a value as a key. These keys must be
unique. Enfries in set are kept in order. Set can be used to store the objects of user-defined classes or
to hold simple data objects like int, char, float, string, etc. Set supports bi-directional iterators.

In this program we have used a set to hold integers. To create and store elements in a set we have
given the following statement,

set <int, less <int> > set1 (arr1, arr1 +10) ;

It indicates that the set would store integer values, which would get arranged in an ascending order.
The function less<int> given in the statement is a predefined algorithm operation, which compares
two elements (integers in our case) and arranges them in ascending order. To arrange elements in
descending order we can use greater<type> algorithm operation, or name of any user-defined
function can be given. The values to be stored and compared are read from the integer arrays.

Thus two sets setl and set2 store the values of arrl and arr2 respectively in ascending order. The set
set3 has been kept empty since we want it to store results of various functions carried on sets setl and
set2.

Then to traverse through the set we have declared an iterator sitr and have iterated the list.

Using set/multiset (2/6)

Next, we have used the find() function to search an element in the list. To this function we have
passed the range in which search should be done and the element. The functions like insert(),
empty(), etc. work in same manner on sets also.

Next, in this program the algorithm specific to sets have been used. The includes() function
compares elements to check if the sequence of elements in the set setl and set2 are same. In our case,
this function would evaluate to false as the elements in two sets are not identical.

Using set/multiset (3/6)

The set union() function extracts those elements which are common as well as uncommon to both
the sets. These elements would then get copied to the third set set3. The template function inserter()
copies these values to the set set3. The elements in the set set3 too, would get arranged in an
ascending order as the function less<> is mentioned while declaring set3.

The function set_intersection() extracts elements which are common to both the sets setl and set2.
These elements are copied to set3. As set3 is being used to store the results of various functions, we
have called clear() function each time before using it in a function.

Using set/multiset (4/6)

The function set_diiference() extracts such elements of set1 which are not present in the set2. These
elements too would then get copied to the set3. The set symmetric difference() function on the
other hand extracts all those elements which are either present in the setl or set2 but not in both. Note
that the elements that would get copied to the set3 (as a result of algorithm operations) would be
unique.

OOPS and C++ Using Set Multiset 121

Using set/multiset (5/6)

A multiset also stores a key value, but as against a set, multiset can store duplicate values. Rest of
the working of multiset is similar to set.

In the same program we have used a multiset of integers, which can hold duplicate or multiple key
values. The statement,

multiset < int, greater < int > > mset1 (a3, an3+10) ;

creates a multiset mset1 to hold integer values. Furthermore, the elements are arranged in descending
order, as the algorithm operation given is greater<<. We have copied the elements of an array arr3
to msetl. To iterate through the container we have declared an iterator msitr. In the similar manner
we have created another multisets mset2 and mset3. The multiset mset2 is initialized with the array
arr4.

An important point to note here is that an iterator declared to traverse a set can be used on multisets
or vice versa. Similarly, if an iterator is associated with a set of ints arranged in ascending order, then

it can be used with the set of ints arranged in descending order or any other order specified by some
user-defined function.

Using set/multiset (6/6)

Here, we have combined the two multisets by calling the set union() function in mset3.

The functions find(), empty(), etc. work in the same manner on a multiset as they work on other
containers.

Using map/multimap (1/3)

A map stores a pair of values, where the pair consists of a key object and the value object. The key
object can be a data such as string, int, float or any other object of user-defined class. The key object
contains a key for which the map can be searched for. The value object stores additional data. The
value object usually stores numbers or strings but it can even store the objects of other classes. For
example, if the key object in a map holds a word, then the value object could be the length of the
word, or the number of times the word has been repeated, or even the meaning of the word.

The data in a map always gets stored in a sorted order of the key object. The order of arranging data
is decided by the function given in the syntax while creating the map. A map always stores a unique
pair of key and value. A multi-map on the other hand stores multiple pairs of key and value in a
sorted order. The various operations, which can be performed, on a map or multi-map are
demonstrated in this program.

In this program we have created a map to store students name and the total marks obtained by the
student. Here the key is the name of a student and a total mark scored by the student is the value for
the key. The elements in the map are stored in an alphabetical order. To create the map we have given
the statement,

map < string, int, less < string > > map1 ;

which indicates that the map map1 would store a pair of string and an int in an order sorted on the
key object string. We have copied the elements to the map map1 from the string array namel and an
int array marks1 through a loop. Using the subscript operator [] the elements are copied to the map.

122 Using Set Multiset OOPS and C++

Using map/multimap (2/3)

Here, firstly we have displayed elements stored in map! through a loop. The statement given in the
loop to display data is slightly different. Till now we simply used an iterator to display the data. But,
since a map stores a pair of key and a value, (*mitr).first is used to display the key value and (
*mifr).second is used to display the value associated with the key.

The algorithm function find() called next searches for the specified name in the map. If the specified
name is found then we are displaying the marks obtained by the student, otherwise an appropriate
message is displayed.

Using map/multimap (3/3)
In the same program we have created a multimap map2. The statement,

multimap <string, int, less < string > > map2 ;

indicates that the multimap would contain a string as a key object and an int as a value, and the
elements would get arranged in ascending order of the key object string. A multimap does not
support the subscript operator []. Hence, to add elements to the multimap we have created an object
p of the template class pair, which stores a pair of objects first and second.

The insert() function adds pair p to the multimap map2. Then through a loop we have displayed the
elements stored in map2.

OOPS and C++ MFC Collection Classes 123

MEC Collection Classes

In this lecture you will understand:

— The limitations of array and linked list
— Various MFC collection classes
— Usefulness of MEFC collection classes

124 MFC Collection Classes OOPS and C++

Store n Integers

Use of an appropriate Data Structure at appropriate place goes a long way in building efficient
programs. If we are to store n integers we can either choose to declare an array of n integers or use a
linked list.

If we are to use an array we must know its dimension beforehand, which may not always be possible.
Moreover, once we commit the size of an array we cannot change it during execution.

If we use a linked list the difficulties that we have with arrays gets avoided, however, understanding
and maintaining a linked list is difficult.

So best solution is to use MFC collection classes.

MEC Collection Classes

Use of an appropriate Data Structure at appropriate place goes a long way in building efficient
programs. If you use an array in place of a linked list or vice-versa the program is likely to fire in
some situation. But while writing a VC++ program the last thing on our mind is how to build a linked
list or how to check bounds of an array. There are more important things to attend to. In such
situations we can either use the Standard Template Library (STL) or MFC Collection Classes (MFC).
Most MFC programmers prefer to use the collection classes than STL because linking another library
(STL) may lead to code bloat. MFC provides collection classes of three categories:

— MEFC Array Classes
— MEFC List Classes
— MFC Map Classes

The slide lists the array, list and map collection classes.

Since we are using MFC classes for the first time, let us get familiar with how they look like. All the
MFC classes begin with letter ‘C’, for example, CByteArray, CObList, etc. MFC uses Hungarian
notation for class names, whereas, structure names are given in capital letters.

We would discuss the collection classes mentioned above one by one. But before we take up their
discussion let us understand a concept called ‘Returning By Reference’. This concept is used at
number of places in MFC collection classes and a good understanding of this concept would go a
long way in mastering MFC classes.

OOPS and C++ First Console Application

First Console Application

In this lecture you will understand:

Returning a reference of a variable and its utility in MFC classes
How CUlIntArray class can be used to maintain an array of unsigned integers.

126 First Console Application OOPS and C++

Returning By Reference

Here, the class array contains an array arr of 10 ints and an overloaded operator []() function. The
array is initialized (code not given in slide) with some values. We wish to store some different value
at 5 position in the array. Observe the second statement given in main(). It would get interpreted as,

a.operator[](5)=25;

The value 5 would get passed as a parameter to operator[]() function, which would get collected in
j- From the operator[]() function we have returned reference of arr[j] i.e. arr[5], which would get
collected in a temporary reference of type int. This temporary reference refers to arr[5]. To this
temporary reference value 25 would get assigned. As a result, arr[S] would now hold 25.

Similarly, while displaying the value stored at 5 position the same steps as explained above would
get carried out and the value of the referent i.e. arr[S] would get displayed.

Steps to Create a Console App

To use the MFC collection classes we would create a Console Application using Visual Studio editor.
A console application is one that gives output in a console. For creating the console application, start
Visual C++ 6.0. Select “File | New” menu option from the VC++ editor. Then select “Win32 Console
application’. Give some project name, say, sample. A folder of this name gets created in which all
the files related to this project are stored. In step 1 of the AppWizard, select “‘An application that
supports MFC’ option and click the “Finish’ button.

The source file ‘sample.cpp’ gets created wherein you can type the program.

Array of UINTs

We know that arrays in C++ suffer from the limitation that their bounds have to be checked by the
programmer. Exceeding the bounds causes an access violation. This can be prevented by creating
array classes that perform bounds checking internally. MFC provides several such array classes as we
saw in the ‘MFC Collection Classes’ section.

This slide shows a program that demonstrates usage of the MFC class CUIntArray. Open the
_tmain() function in the ‘.cpp’ file which is the entry point of a Console Application. Some
‘AppWizard’ generated code would already be there. t preceding main() indicates that this program
can use Unicode characters. The arguments passed to _tmain() represent command-line arguments
and environment variables. Since for our program these arguments are not relevant we would not go
into their details here.

This program demonstrates how the various functions of CUIntArray class can be used to maintain
an array of UINTs, where UINT is a typedef for unsigned int. Here, we have declared an array of
ten UINTs and then initialized it through a loop. The size of the array is set using the SetSize()
member function.

The [] operator is overloaded in the CUIntArray class and so the expression a [i] calls the
overloaded operator function as shown in the slide.

Slide Number 7

To get the size i.e. the number of elements present in a we have called GetSize() function. Then to
get an index of the last element of array ie to get the maximum index we have called
GetUpperBound() function. Remember an index of Array class always begins with 0. The
difference between GetSize() and GetUpperBound() is that the first one retuns total number of
elements, whereas, the second returns index of the last element hence result of both always differ by
one.

OOPS and C++ First Console Application 127

To get an element at a specified index we have called GetAt() function. We have collected element
placed at index 6 in an UINT data item. Similarly. to replace an element at index 6 with new element
we have called SetAt() function and then retrieved the new element by calling GetAt(). The new
element at index 6 now would be 99.

Slide Number 8

To insert new element we can make use of ImsertAt() function which first shifts elements from the
specified index one place to the right and then inserts given element. Thus, InsertAt() function
increases the size of array as it inserts element in the array whereas SetAt() simply replaces the
element at specified index. Next, we have displayed all elements of the array by running a loop. Note
that GetUpperBound() this time returns index as 10 (as the size of array is increased by 1).

Next, to delete an element from the array present at specified index we have called RemoveAt()
function. This function will remove 2 elements starting from index 3. Then, we have again displayed
the modified array by running a loop.

Now, we wish to append a new airay to an existing array a. So, first we have created a new array b
having five elements.

Slide Number 9

To add elements of b to a we have called Append() function. On appending an array to another
array, a new array is created, elements from older array are copied to it and older array is deleted. To
display elements of array again we have run a loop. The GetUpperBound() this time refurns
maximum index as 13.

Lastly, we have removed elements of both the arrays a and b by calling RemoveAll() function. Since
a does not contain any element now, GetSize() returns 0.

2-D Array

This slide shows how the CUIntArray class can be used to create a 2-D array.

Here, we have created two CUIntArray objects—a[0] and a[l1]. Each object holds a different
number of elements. The statement,

alillil=};

gets interpreted as ali].operator|] (j) = j, which returns a temporary reference. The value of j is
then placed at the referent to which the temporary reference is referring.

Now that you know how to use the array class CUIntArray, you can use the other MFC array classes
on similar lines.

OOPS and C++ Linked List of Strings

129

Linked List of Strings

In this lecture you will understand:

— How CStringList class can be used to maintain a linked list of strings.

130 Linked List of Strings OOPS and C++

Linked List of Strings

Though the InsertAt() and RemoveAt() functions make it easy to add/delete elements to/from
array, the performance suffers since array elements may have to be shifted upward or downward in
memory. This can be avoided using MFC list classes that maintain an ordered list of items using the
linked list data structure. When items are maintained using linked list the insertion or deletion of an
item doesn’t require any items to be shifted upward or downward in memory. It simply involves
readjustment of pointers stored in the items before and after the insertion point.

This slide shows a program that creates a list of strings. in this program firstly we have created an
object of CStringList class and then added 4 strings to it by calling AddTail() function. This
function appends a new node to the linked list.

To print the contents of the list first we should have a pointer to the first node of the list. This we
have retrieved here by calling GetHeadPosition() function. This function returns the position of the
first node, which we have collected in p, a data item of type POSITION. POSITION is a pointer to a
node suitably typedefed. Then through a loop we have retrieved a string stored at each node and
displayed it. To retrieve a string we have called GetNext() function by passing it the address of first
node i.e. p which returns a string present at current position and changes p to make it point to the
next position i.e. address of the second node. The value in p can be changed because it is received as
a reference in GetNext().

Note the statement given in the code that displays the strings retrieved. The GetNext() function
returns a CString object, and as mentioned earlier CString is an MFC class, which cout doesn’t
know. However, it knows how to display a string pointed to by a long pointer. This is the reason why
we have typecasted the value returned by GetNext() to LPCTSTR (Long Pointer To Constant
String). CString provides an overloaded typecast operator for LPCTSTR.

Slide Number 4

To replace a particular string present in the list first we need to get the position (i.e. an address) of the
node containing the string. This we have done here by calling the Find() function. Then to replace
the string we have called SetAt() function and passed to it the position p and the new string. We
have also displayed the newly replaced string.

Next we have inserted a string after the specified string. Here again, first we need to get the position
of that node after which we want to insert string. This we have done by calling Find() function. Next
we have called the InsertAfter() function to which we have passed the position p (after which new
node has to be inserted) and the string to be inserted. This function returns the position of the newly
added node, which we have collected in p. Then we have displayed the string at position p.

Slide Number 5

On similar lines, to remove a string from the list we need to get position of the node containing
particular string. So, here too we have called Find() function and collected the position of node to be
deleted in p. To remove the node we have called RemoveAt() function and passed it the position p.

Lastly, we have printed the contents of the list thus updated. Here first we have retrieved the position
of first node by calling GetHeadPosition() and collected it in p. Then, the loop runs till p has not
reached end of the list, i.e. till p is not NULL.

OOPS and C++ MAP Strings 131

MAP Strings

In this lecture you will understand:

— How to create map of items keyed by other item with the help of MFC CMapStringToString
Class.

— How to set multiple values with a key in a map

132 MAP Strings OOPS and C++

Map Strings

A map is a table of items keyed by other items. Maps are designed such that given a key the
corresponding item can be found in the table quickly. Maps make locating an item in a large volume
of data efficiently.

Here we have stored in the map Hindi names for days of week. Each item is keyed by a string
specifying its English-Language equivalent. The [] operator inserts an item and it’s key into the map.
Internally what is maintained is a linked list of pairs of item and its key. Note that the order of
insertion may be different than order of storage. Which order is used depends upon the hashing
scheme used by MFC.

Now, when we say m["Sun"] = "Rav" ; it becomes m.operator [| ("Sun") = "Rav" ; The
overloaded operator [] returns a reference to a CString belonging to the node where “Sun” is stored.
Now it becomes reference.operator = ("Rav") ; This reference is a CString reference, hence =
operator of CString gets called and “Rav” gets stored in a char array that is part of the CString
object and the CString object is part of the node.

Next we have called Lookup() to retrieve an item. If Lookup() returns zero it means no item is
keyed by the key specified in Lookup()s first parameter. Here, we have searched for an item
associated with the key Wed. If it is found then we have displayed the value of the item collected in s.

Slide Number 4

To display the value of key and its associated item, we need to get the position of first pair added in
map. This we have retrieved by calling GetStartPosition() function and collected in p. Then the way
we traversed through the linked list here too we are required to traverse through the list of pairs. Note
that here instead of GetNext(), map class has provided GetNextAssoc() function. To this function
we have passed the position p. and two CStrings key and item in which the value of the key and its
associated item would get collected for the current position. This function also changes position p to
the next node. GetNextAssoc() takes all three arguments as references.

One Key — Multiple Values

The program given in the slide shows how multiple values can be set for one key.

Here first we have created an array of objects of CStringList class. Then we have added two strings
in each of the CStringList object of array s.

Next we have created an object of CMapStringToOb, which maps a string with an address of object
of class CObject or of class derived from CObject. We have then stored in the map an alphabet and
address of CStringList objects of CStringList array s. In other words with every CString (i.e an
alphabet) we have associated multiple values stored in CStringList object.

Now, to retrieve the key and its associated multiple values we have run a loop. First we have
retrieved the position of first pair by calling GetStartPosition(). Then in every iteration of for loop
we have called GetNextAssoc() which refurns the value of key and its associated item. To retrieve
items from the CStringList object collected in str we have retrieved the position of the first node and
then traversed through the list till position strpos is not NULL.

